Fire Sprinkler Hydraulic Data

and Product Data

DERK R. BEUTLER Certification Number 077553

Advanced Auto Parts Store #7659 8900 Walker Mill Road Capital Heights, MD 20743 04/12/2015

... Fire Protection by Computer Design

Klempner Services 2205 Leroy Ave Gastonia, NC 28054 980.422.1157

Job Name : Advanced Auto Parts - Capital Heights, MD Building : FP2 Location : 8900 WALKER MILL ROAD, CAPITAL HEIGHTS, MD 20743 System : 1 Contract : Data File : AAP Capital Heights, MD Area-1.WXF

HYDRAULIC CALCULATIONS for

Project name: Advanced Auto Parts #7659 *Location:* 8900 WALKER MILL ROAD, CAPITAL HEIGHTS, MD 20743 *Drawing no:* FP2 *Date:* 04/10/2015

Design

Remote area number: 1 Remote area location: SALES Occupancy classification: ORDINARY GROUP II Density: .20 - Gpm/SqFt Area of application: 1177.76 - SqFt Coverage per sprinkler: 123.702 - SqFt Type of sprinklers calculated: VIKING VK350 Q.R. No. of sprinklers calculated: 10 In-rack demand: N/A - GPM Hose streams: 250 - GPM Total water required (including hose streams): 532.877 - GPM @ 44.8505 - Psi Type of system: WET Volume of dry or preaction system: N/A - Gal

Water supply information

Date: 4/16/2014 Location: 8800 WALKER MILL ROAD Source: WASHINGTON SUBURBAN SANITARY COMMISSION

Name of contractor: Klempner Services Address: 2205 Leroy Ave, Gastonia, NC 28054 Phone number: 980.422.1157 Name of designer: Derk R. Beutler Authority having jurisdiction: PRINCE GEORGE'S COUNTY Notes: (Include peaking information or gridded systems here.) AREA REDUCTION APPLIED FOR 18'-2.5" CEILING HEIGHTS 27.685% REDUCTION MINIMUM REMOTE AREA = 1,084.725 SQ.FT.

WASHINGTON SUBURBAN SANITARY COMMISSION

ON-SITE NO.: 15 OS 1582

HYDRAULIC INFORMATION SHEET

200' SHEET NO .: 202SE08

		PART 1 – INF	ORMATION	N PROVID	ED BY TH	E APPLICANT		
LOCA	TION OF W	/ORK				The information provided by the	WSSC re	presents
PRO	OPOSE	D ADVANCE AUTO				water system. A specific flow an guaranteed to be delivered.	nd pressure	e are not
LOT P 59	BLOCK	SUBDIVISION	ESS PARK		WN			
BUILD	ING ADDR	ESS (HOUSE NO., STREET NAME		NO. OF				
20.22		(-)	STORIES		MARK JOHNSTON	10/	/23/2014
8900	WALKE	R MILL ROAD		1	20743	NAME PRINTED	ſ	DATE
						GLW	(301)	421-4024
TYPE	STRUCTU	RE (STORE, DWELLING, ETC.)	SPECIFI	IC USE	COUNTY	NAME OF COMPANY		PHONE
RET	ΔΠ			RT SALES	PG	3909 NATIONAL DRIVE	066	
						ADDRESS OF COMPANY	000	
			/ ^ I N I*				150.0	0.#
			/IAIN [®]				166.0	<u>ט</u> וו. ח ה
	FIRST						NI/A	<u>υ</u> π.
		-LOOR ELEVATION					IN/A	_ ^{ft.}
DOME	STIC FL	<u>.OW</u>				20		
	PEAK	FLOW				ZU		_gpm
FIRE S	SPRINKL					ot	- 600	
	REQU	JIRED FLOW				est	- 600	_gpm
	ELEV	ATION OF HIGHEST SPRIN	IKLER HEAD)		18	34.2	_ ft.
<u>ON-SI</u>	<u>TE FIRE</u>	HYDRANT SYSTEM						
	REQU	JIRED FLOW AT LAST FIRE	HYDRANT				1,000	_ gpm
	ELEV	ATION OF LAST FIRE HYDI	RANT				163.7	<u>5</u> ft.
	REQU	JIRED FLOW AT ADJACEN	FIRE HYDF	RANT			N/A	_ gpm
	ELEV	ATION OF ADJACENT FIRE	HYDRANT				N/A	ft.
FIRE S	STANDP	IPE SYSTEM						
	REQU	JIRED FLOW						_ gpm
	ELEV	ATION OF TOP OUTLET						ft.
		PART 2		ATION PR	OVIDED E	BY WSSC		
	LOW	DOMESTIC PRESSURE*				52		psi
	HIGH	PRESSURE*				89		psi
	LOW	PRESSURE WITH FIRE FLO	OW OF 1500-	-GPM*		39		_psi
	LOW	PRESSURE WITH THE REC	QUESTED SP	PRINKLER	FLOW*	50		psi
	LOW	PRESSURE WITH THE REC	QUESTED FI	RE STAND	PIPE FLOV	V* Not requeste	d	 psi
*AT 1	THE POI	NT OF CONNECTION		-		Mrahman		
T 11								20, 2015

THIS COMPLETED DOCUMENT SHALL BE DELIVERED TO THE APPROPRIATE COUNTY BUILDING OFFICIAL IN CONJUNCTION WITH THE BUILDING PERMIT APPLICATION.

		laryland 20707-5901		Hon. Adr Dr. Rosc	Antonio L ienne A. I oe M. Mc
				GENEI J	RAL MAR erry N. J
CUSTOMER INFORMATION					
FLOW TEST PREPARED FOR: CONTACT PERSON ADDRESS: TELE. # FAX # EMAIL:	Fireline Corp Matt Losignor 4506 Hollins 410-247-1422 410-242-0779 Matt Losignor	poration r Ferry Rd, Ba x323 r	altimore, MD :	21227	
FIRE FLOW TEST INFORM	ATION				
8800 Walker Mill Rd	TEST DATE 04/16/14	TIME OF TEST	I 200-FT Sht	MAP PAGE P5651	GR
TEST LOCATION 8800 Walker Mill Rd FLOW TEST RESULTS	TEST DATE 04/16/14	TIME OF TES	F 200-FT Sht 202SE08	MAP PAGE P5651	GR
TEST LOCATION 8800 Walker Mill Rd FLOW TEST RESULTS TEST HYDRANT (S&R) No. FLOW HYDRANT (FLOW) No.	TEST DATE 04/16/14	TIME OF TES	F 200-FT Sht 202SE08 F021 F022	MAP PAGE	GR I
TEST LOCATION 8800 Walker Mill Rd FLOW TEST RESULTS TEST HYDRANT (S&R) NO. FLOW HYDRANT (FLOW) NO. ELEVATION @S&R HYDRANT (F ELEVATION @FLOW HYDRANT (TEST DATE 04/16/14 T) FT)	TIME OF TES	F 200-FT Sht 202SE08 F021 F022 155 154	MAP PAGE	GR
TEST LOCATION 8800 Walker Mill Rd FLOW TEST RESULTS TEST HYDRANT (S&R) No. FLOW HYDRANT (FLOW) No. ELEVATION @S&R HYDRANT (F ELEVATION @FLOW HYDRANT (F HHG:	TEST DATE 04/16/14 T) FT)	TIME OF TES	F 200-FT Sht 202SE08 F021 F022 155 154 365	MAP PAGE	GR I
TEST LOCATION 8800 Walker Mill Rd FLOW TEST RESULTS TEST HYDRANT (S&R) No. FLOW HYDRANT (FLOW) No. ELEVATION @S&R HYDRANT (F ELEVATION @FLOW HYDRANT (HHG: LHG:	TEST DATE 04/16/14 T) FT)	TIME OF TES	F 200-FT Sht 202SE08 F021 F022 155 154 365 280	MAP PAGE	GR
TEST LOCATION 8800 Walker Mill Rd FLOW TEST RESULTS TEST HYDRANT (S&R) NO. FLOW HYDRANT (FLOW) NO. ELEVATION @S&R HYDRANT (F ELEVATION @FLOW HYDRANT (HHG: LHG: STATIC PRESSURE (PSI):	TEST DATE 04/16/14 T) FT)	TIME OF TES	F 200-FT Sht 202SE08 F021 F022 155 154 365 280 67	MAP PAGE P5651	GR
TEST LOCATION 8800 Walker Mill Rd FLOW TEST RESULTS TEST HYDRANT (S&R) NO. FLOW HYDRANT (FLOW) NO. ELEVATION @S&R HYDRANT (F ELEVATION @FLOW HYDRANT (HHG: LHG: STATIC PRESSURE (PSI): RESIDUAL PRESSURE (PSI):	TEST DATE 04/16/14 T) FT)	TIME OF TES	F 200-FT Sht 202SE08 F021 F022 155 154 365 280 67 51	MAP PAGE P5651	GR
TEST LOCATION 8800 Walker Mill Rd FLOW TEST RESULTS TEST HYDRANT (S&R) NO. FLOW HYDRANT (FLOW) NO. ELEVATION @S&R HYDRANT (F ELEVATION @FLOW HYDRANT (HHG: LHG: STATIC PRESSURE (PSI): RESIDUAL PRESSURE (PSI): PITOT FLOW (GPM)	TEST DATE 04/16/14 T) FT)	TIME OF TES	F 200-FT Sht 202SE08 F021 F022 155 154 365 280 67 51 2164	MAP PAGE P5651	GR

50 1 1 1 1 1 1 40 1 1 1 1 1 1 30 1 1 1 1 1 1 20 1 1 1 1 1 1 10 1 1 1 1 1 1 00 1 1 1 1 1 1	
40 10 <	
20	
10	
10 Percent Under	
D D D D D D D D D D D D D D D D D D D	

Water Supply Curve (C)

Fittings Used Summary

Klempner Services Advanced Auto Parts - Capital Heights, MD

Fitting Le	gend																				
Abbrev.	Name	1/2	3/4	1	1¼	11⁄2	2	21/2	3	31⁄2	4	5	6	8	10	12	14	16	18	20	24
E	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
F	NFPA 13 45' Elbow	1	1	1	1	2	2	3	3	3	4	5	7	9	11	13	17	19	21	24	28
Fsp	Flow Switch Potter VSR	Fittin	g gener	ates a Fi	xed Loss	Based of	on Flow														
G	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
Т	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Zfe	Febco 870V	Fittin	g gener	ates a Fi	xed Loss	Based of	on Flow											-	-		

Units Summary

Diameter Units	Inches
Length Units	Feet
Flow Units	US Gallons per Minute
Pressure Units	Pounds per Square Inch

Pressure / Flow Summary - STANDARD

Klempner Services Advanced Auto Parts - Capital Heights, MD

Page	4
Date	04/10/2015

Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
18.0	8	9.56	na	24.74	0.2	123.702	7.0
18.0	8	9.73	na	24.96	0.2	123.702	7.0
18.0	8	10.36	na	25.74	0.2	123.702	7.0
18.0	8	11.7	na	27.36	0.2	123.702	7.0
18.0	8	14.08	na	30.02	0.2	123.702	7.0
18.0		19.21	na				
18.0	8	12.23	na	27.98	0.2	123.702	7.0
18.0	8	12.45	na	28.22	0.2	123.702	7.0
18.0	8	13.23	na	29.1	0.2	123.702	7.0
18.0	8	14.91	na	30.9	0.2	123.702	7.0
18.0	8	17.9	na	33.85	0.2	123.702	7.0
18.0		18.95	na				
16.0		21.84	na				
16.0		22.03	na				
16.0		24.8	na				
5.0		32.73	na				
5.0		32.74	na				
1.5		37.75	na				
-3.0		40.08	na				
-3.0		40.08	na	250.0			
-3.0		40.44	na				
-3.0		43.79	na				
-5.0		44.85	na				
	Elevation 18.0 16.0 16.0 16.0 1.5 -3.0 -3.0 -3.0 -3.0 -5.0 -3.0 -3.0 -5.0 -3.0 -5.0 -3.0 -3.0 -5.0 -3.0 -3.0 -5.0 -5.0 -5.0 -3.0 -3.0 -5.0 -5.0 -5.0 -5.0 -3.0 -5.0	Elevation K-Fact 18.0 8 18.0 8 18.0 8 18.0 8 18.0 8 18.0 8 18.0 8 18.0 8 18.0 8 18.0 8 18.0 8 18.0 8 18.0 8 18.0 8 18.0 8 18.0 8 18.0 16.0 16.0 16.0 15.0 5.0 5.0 5.0 3.0 -3.0 -3.0 -3.0 -3.0 -5.0	Elevation K-Fact Pt Actual 18.0 8 9.56 18.0 8 9.73 18.0 8 10.36 18.0 8 11.7 18.0 8 14.08 18.0 8 12.23 18.0 8 12.23 18.0 8 12.23 18.0 8 12.45 18.0 8 13.23 18.0 8 14.91 18.0 8 14.91 18.0 8 12.45 18.0 8 14.91 18.0 8 14.91 18.0 8 14.91 18.0 8 14.91 18.0 8 17.9 18.0 22.03 16.0 22.03 16.0 22.03 32.73 5.0 32.73 37.75 -3.0 40.08 -3.0 -3.0 40.08 -3.0	Elevation K-Fact Pt Actual Pn 18.0 8 9.56 na 18.0 8 9.73 na 18.0 8 10.36 na 18.0 8 11.7 na 18.0 8 14.08 na 18.0 8 12.23 na 18.0 8 12.45 na 18.0 8 12.45 na 18.0 8 12.45 na 18.0 8 12.45 na 18.0 8 14.91 na 18.0 18.95 na 16.0 22.03 na 16.0 22.03 na 16.0 24.8 na 5.0 32.74 na 3.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Elevation K-Fact Pt Actual Pn Actual Flow Actual Density Area 18.0 8 9.56 na 24.74 0.2 123.702 18.0 8 9.73 na 24.96 0.2 123.702 18.0 8 10.36 na 25.74 0.2 123.702 18.0 8 11.7 na 25.74 0.2 123.702 18.0 8 11.7 na 27.36 0.2 123.702 18.0 8 14.08 na 30.02 0.2 123.702 18.0 8 12.45 na 28.22 0.2 123.702 18.0 8 12.45 na 28.22 0.2 123.702 18.0 8 14.91 na 30.9 0.2 123.702 18.0 8 14.91 na 30.9 0.2 123.702 18.0 8 17.9 na 33.85 0.2

The maximum velocity is 21.67 and it occurs in the pipe between nodes 10 and 22T

Final Calculations - Hazen-Williams

Klempner Services Advanced Auto Parts - Capital Heights. MD

Page 5 Date 04/10/2015

Auvanced	Auto Parts	s - Capital He	ignis, wid					Dale	9 04/10	/2015
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fittir o Eqv.	ng r . Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	*****	Notes	****
1 to	24.74	1.682 120.0		0.0 0.0	8.830 0.0	9.564 0.0		K Factor =	= 8.00	
2	24.74	0.0194		0.0	8.830	0.171		Vel = 3.5	57	
2 to	24.96	1.682 120.0		0.0	8.830 0.0	9.735 0.0		K Factor =	= 8.00	
3	49.7	0.0703		0.0	8.830	0.621		Vel = 7.1	8	
3 to	25.75	1.682 120.0		0.0 0.0	8.830 0.0	10.356 0.0		K Factor =	= 8.00	
4	75.45	0.1522		0.0	8.830	1.344		Vel = 10.	89	
4 to	27.36	1.682 120.0		0.0 0.0	8.830 0.0	11.700 0.0		K Factor =	= 8.00	
5	102.81	0.2699	47	0.0	8.830	2.383		Vel = 14.	84	
5 to	30.02	1.682 120.0	11	9.9 0.0	1.920 9.900	14.083 0.0		K Factor =	- 8.00	
21T 21T to	0.0	2.157 120.0	1T	12.307 0.0	1.420 12.307	19.207 0.866		ver = 19.	10	
31B	132.83	0.1291		0.0	13.727	1.772		Vel = 11.	66	
	0.0 132.83					21.845		K Factor =	= 28.42	
6 to	27.98	1.682 120.0		0.0 0.0	8.830 0.0	12.233 0.0		K Factor =	= 8.00	
7	27.98	0.0243		0.0	8.830	0.215		Vel = 4.0)4	
7 to	28.23	1.682 120.0		0.0 0.0	8.830 0.0	12.448 0.0		K Factor =	= 8.00	
8	56.21	0.0882		0.0	8.830	0.779		Vel = 8.1	2	
8 to	29.09	1.682 120.0		0.0 0.0	8.830 0.0	13.227 0.0		K Factor =	= 8.00	
9	85.3	0.1911		0.0	8.830	1.687		Vel = 12.	32	
9 to	30.90	1.682 120.0		0.0 0.0	8.830 0.0	14.914 0.0		K Factor =	= 8.00	
10	116.2	0.3385		0.0	8.830	2.989		Vel = 16.	78	
10 to	33.85	1.682 120.0		0.0 0.0	1.920 0.0	17.903 0.0		K Factor =	= 8.00	
22T	150.05	0.5432		0.0	1.920	1.043		Vel = 21.	67	
22T to	0.0	2.157 120.0	1T	12.307 0.0	1.420 12.307	18.946 0.866				
32B	150.05	0.1617		0.0	13.727	2.220		Vel = 13.	17	
	0.0 150.05					22.032		K Factor =	= 31.97	
31B to	132.83	4.26 120.0	1T	26.334 0.0	13.500 26.334	21.845 0.0				
32B	132.83	0.0047		0.0	39.834	0.187		Vel = 2.9	99	
32B to TOR	150.05 282.88	4.26 120.0 0.0190	3E	39.501 0.0 0.0	106.000 39.501 145.501	22.032 0.0 2.765		Vel = 6.3	37	

Klempner Advanced	Services Auto Parts	s - Capital He	eights, MD				Page 6 Date 04/10/2015
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fitting or Eqv. Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes *****
TOR to BOR	0.0 282.88	4.26 120.0 0.0191	1Fsp 0.0 0.0 0.0	8.750 0.0 8.750	24.797 7.764 0.167		* Fixed loss = 3 Vel = 6.37
BOR to BEP	0.0	4.26 120.0 0.0180	0.0 0.0 0.0	0.500 0.0 0.500	32.728 0.0 0.009		Vel - 637
BFP to	0.0	4.26 120.0	1Zfe 0.0 0.0	0.500	32.737 5.003		* Fixed loss = 3.487
FLG FLG to	0.0	6.16 140.0	2F 20.084 1E 20.084	121.000 40.168	37.750 1.949		vei = 0.37
RED RED to	<u>282.88</u> 0.0	0.0024 8.27 140.0	0.0 0.0 0.0		0.382 40.081 0.0		Vel = 3.05
HOSE	282.88 250.00	0.0006	0.0 2F 28.468	7.000	0.004		Vel = 1.69 Qa = 250
	532.88	0.0018	0.0	28.468 196.468	0.0		Vel = 3.18
MTR1 to MTR2	0.0 532.88	6.16 140.0 0.0077	0.0 0.0 0.0	45.000 0.0 45.000	40.443 3.000 0.345		* Fixed loss = 3 Vel = 5.74
MTR2 to TEST	0.0 532.88	8.27 140.0 0.0018	1F 14.234 1T 55.354 1G 6.326	32.000 75.914 107.914	43.788 0.866 0.196		Vel = 3.18
	0.0 532.88				44.850		K Factor = 79.57

Final Calculations - Hazen-Williams

SPECIFICATION SHEET

LEAD FREE* MasterSeries® LF870V Double Check Backflow Prevention Assembly

Size: 21/2" - 8" (65mm - 200mm)

The FEBCO MasterSeries LF870V Double Check Assembly is specifically designed to protect against possible backpressure and backsiphonage conditions for non-health hazard (i.e., pollutant) application in accordance with Local Governing Water Utility Code. This Backflow Assembly is primarily used on potable drinking water systems where Local Governing Code mandates protection from non-potable quality water being pumped or siphoned back into the potable water system.

The LF870V features Lead Free* construction to comply with low lead installation requirements. The Lead Free* Double Check Assembly shall comply with state codes and standards, where applicable, requiring reduced lead content.

Features

- Inline Serviceable Assembly
- Horizontal "N-Pattern" Installations
- Vertical-Up "Z-Pattern" Installations
- No Special Tools Required for Servicing
- Captured Modular Spring Assembly
- Reversible & Replaceable Discs
- Field Replaceable Seats
- Ductile Iron Valve Body Design
- Stainless Steel Check Components
- · Winterization feature with disc retainers and valve body drain ports
- Clapper Check Assembly
- · Commonality between 1st & 2nd Check Components
- Captured O-ring Design

MODEL LF870V DOUBLE CHECK ASSEMBLY (Shown in standard orientation)

Specifications

The FEBCO MasterSeries LF870V Double Check Valve Assembly shall be installed on the potable water supply and at each point of cross-connection to protect against possible backpressure and backsiphonage conditions for non-health hazard (i.e., pollutant) applications. The assembly shall consist of a main line valve body composed of two (2) independently acting approved clapper style check modules with replaceable seats and disc rubbers. Servicing of both check modules does not require any special tools and are accessed through independently top entry covers. This assembly shall be fitted with AWWA Compliant inlet/outlet resilient seated shutoff valves; when used on a Fire-Sprinkler application, the assembly shall be fitted with approved UL/FM inlet/outlet resilient seated shutoff valves and contain four (4) properly located resilient seated test cocks as specified by AWWA Standard C510. The assembly shall be approved for horizontal and/or vertical-up installations while meeting the requirements of AWWA Standard C510 flow and pressure loss performance parameters.

NOTICE

Inquire with governing authorities for local installation requirements

A WARNING

It is illegal to use this product in any plumbing system providing water for human consumption, such as drinking or dishwashing, in the United States. Before installing standard material product, consult your local water authority, building and plumbing codes.

*The wetted surface of this product contacted by consumable water contains less than 0.25% of lead by weight.

Job Name	Contractor
Job Location	Approval
Engineer	Contractor's P.O. No
Approval	Representative

FEBCO product specifications in U.S. customary units and metric are approximate and are provided for reference only. For precise measurements, please contact FEBCO. FEBCO reserves the right to change or modify product design, construction, specifications, or materials without prior notice and without incurring any obligation to make such changes and modifications on FEBCO products previously or subsequently sold.

ES-F-LF870V

Options - Suffix

- OSY: UL/FM Approved OS&Y Gate Valves [ANSI/AWWA C515 Compliant]
- NRS: Non-Rising Stem Gate Valves [ANSI/AWWA C509 Compliant]
- LG: Less Shut-off valves; This is NOT an APPROVED ASSEMBLY

Example Ordering Description:

4" LF870V-OSY - Valve Assembly fitted with OS&Y Shutoff Valves

Available Components

Wye Strainer: FDA Approved [ASME B16.1 Class 125 & AWWA Class D Flange]

Series 611 Valve Setter: MJ x MJ - Mechanical Joint x Mechanical Joint [AWWA C111/A21.11] MJ x FL - Mechanical Joint x Flange [AWWA C111/A21.11; ASME B16.1 Class 125/ AWWA Class D Flange]

FL x FL – Flange x Flange [ASME B16.1 Class 125 & AWWA Class D Flange]

Assembly Flow Orientation:

Horizontal (N-Pattern 21/2"	– 8") - Approved by FCCCHR-USC, ASSE,
	cULus, FM, IAPMO
Vertical Up (Z-Pattern 21/2"	- 8") - Approved by FCCCHR-USC, ASSE,
	cULus, FM, IAPMO

Materials

Below is a general materials list of the Model LF870V. All assemblies size $2\frac{1}{2}$ " through 8" is similar in materials and construction. Please contact your local FEBCO Representative if you require further information.

Main Valve Body: Ductile iron Grade 65-45-12

Coating:	Fusion epoxy coated internal and external AWWA C550-90
Shutoff Valves:	NRS resilient wedge gate valve AWWA C509 (Standard)
	OSY resilient wedge gate valve AWWA C515 (UL/FM)
Check Seats:	Stainless Steel
Disc Holder:	Stainless Steel
Elastomer Disc:	Silicone
Spring:	Stainless Steel
Clamp:	AWWA C606
	T+ 01- #2

Approvals – Standards:

- Approved by the Foundation for Cross-Connection Control and Hydraulic Research at The University of Southern California [FCCCHR-USC]
- ASSE 1015 Listed
- **UL Classified [US & Canada]
- **FM Approved
- IAPMO
- AWWA Standard C510 Compliant
- End Connections: Compliant to ASME B16.1 Class 125 & AWWA Class
 D Flange
- **Assembly configured with UL/FM Approved OS&Y RW Gate Valves. Less gate valve assemblies are not UL/FM approved configurations.

Pressure - Temperature

Max. Working Pressure:	175 psi (12.1 bar)
Vin. Working Pressure:	10 psi (0.7 bar)
Hydrostatic Test Pressure:	350 psi (24.1 bar)
Hydrostatic Safety Pressure:	700 psi (48.3 bar)
Temperature Range:	33°F - 140°F (0.5°C- 60°C) Continuous

Dimensions – Weights

Below are the nominal dimensions and physical weights for the Model LF870V size 2½" through 8". Allowances must be made for normal manufacturing tolerances. Please visit our website to download a copy of this product's installation instructions, or contact your local FEBCO Representative for more information.

Model LF870V Standard Orientation (N-Pattern)

Note: The Model LF870V is shipped in the standard (N-Pattern) orientation as shown above.

Gate Valve Side View Clearance

LF870V SIZE (DN)

DIMENSIONS

WEIGHT****

		Å	4	E	3		С	[)	E	E	F	-	(G		Н	*	*	J*	**	NR	S	OS	Ϋ́
in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg.	lbs.	kg.										
2½	65	25¾	654	12½	318	6¼	159	24¼	616	16%	422	13%	346	27¼	692	3½	89	12%	321	16%	416	197	89	201	91
3	80	25¾	654	12½	318	6¼	159	24¼	629	16%	422	141⁄8	359	28¼	718	3¾	95	12%	327	22 ¼	565	223	101	227	103
4	100	27%	708	14	356	7	178	26¾	680	17¾	451	15½	394	31	787	4½	114	14%	365	23¼	591	320	145	332	151
6	150	32¼	819	16	406	8	203	32¼	819	21%	548	18%	473	37¼	946	5½	140	18%	479	30½	765	492	223	512	232
8	200	37½	953	18½	470	9¼	235	36¾	324	24%	632	20¾	527	41½	1054	6¾	172	23 ½	597	37¾	959	782	355	810	367

Notes:

** Indicates nominal dimensions with NRS Gate Valves

*** Indicates nominal dimensions with OSY Gate Valves (Full Open Position)

**** Indicates weight of complete Backflow Assemblies with specified Gate Valves

Performance

Flow capacity chart identifies valve performance based upon rated water Velocity up to 20fps

- Maximum service flow rate is determined by maximum rated Velocity of 7.5 fps.
- AWWA Manual M-22 (Appendix C) recommends that the maximum water Velocity in the services be not more than 10fps.
- UL flow rate is determined by typically rated Velocity of 15 feet/sec.

Capacity

A Watts Water Technologies Company

USA: Tel: (800) 767-1234 • Fax: (800) 788-4491 • FEBCOonline.com Canada: Tel: (905) 332-4090 • Fax: (905) 332-7068 • FEBCOonline.ca Latin America: (52) 81-1001-8600 • Fax: (52) 81-8000-7091 • FEBCOonline.com

NIKING[®]

TECHNICAL DATA

MICROFAST® QUICK RESPONSE UPRIGHT SPRINKLER VK350 (K8.0)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

1. DESCRIPTION

The Viking Microfast[®] Quick Response Upright Sprinkler VK350 is a small, thermosensitive, glass-bulb spray sprinkler available in several different finishes, temperature ratings, and K-Factors to meet design requirements. The special Polyester, Polytetrafluoroethylene (PTFE), and Electroless Nickel PTFE (ENT) coatings can be used in decorative applications where colors are desired. In addition, these coatings have been investigated for installation in corrosive atmospheres and are listed/approved as corrosion resistant as indicated in the Approval Charts. (Note: **FM Global approves the ENT coating as corrosion resistant**. FM Global has no approval classification for PTFE and Polyester coatings as corrosion resistant.)

2. LISTINGS AND APPROVALS

cULus Listed: Category VNIV

- FM Approved: Class Series 2000
- VdS Approved: Certificates G414017 and G414018

LPCB Approved

CE Certified: Standard EN 12259-1, EC-certificate of conformity 0832-CPD-2001 and 0786-CPD-40278

NOTE: Other International approval certificates are available upon request.

Refer to Approval Chart 1 and Design Criteria cULus Listing requirements, and refer to Approval Chart 2 and Design Criteria FM Approval requirements that must be followed.

3. TECHNICAL DATA

Specifications:

CE

Minimum Operating Pressure: 7 psi (0.5 bar)* Maximum Working Pressure: 175 psi (12 bar) wwp. Factory tested hydrostatically to 500 psi (34.5 bar) Testing: U.S.A. Patent No. 4,831,870 Thread size: 1/2" NPT, 15 mm BSP, 3/4" NPT, 20 mm BSP Nominal K-Factor: 8.0 U.S. (115.2 metric**) Glass-bulb fluid temperature rated to -65 °F (-55 °C) Overall Length: 2-5/16" (59 mm) *cULus Listing, FM Approval, and NFPA 13 installs require a minimum of 7 psi (0.5 bar).

The minimum operating pressure for LPCB and CE Approvals ONLY is 5 psi (0.35 bar).

Material Standards:

Frame Casting: Brass UNS-C84400 Deflector: Copper UNS-C19500

Bulb: Glass, nominal 3 mm diameter

Belleville Spring Sealing Assembly: Nickel Alloy, coated on both sides with PTFE Tape Screw: Brass UNS-C36000

Pip Cap and Insert Assembly: Copper UNS-C11000 and Stainless Steel UNS-S30400

For PTFE Coated Sprinklers: Belleville Spring-Exposed, Screw-Nickel Plated, Pip Cap-PTFE Coated

For Polyester Coated Sprinklers: Belleville Spring-Exposed

For ENT Coated Sprinklers: Belleville Spring-Exposed, Screw and Pipcap - ENT plated.

Ordering Information: (Also refer to the current Viking price list.)

Order Viking Microfast[®] Quick Response Upright Sprinkler VK350 by first adding the appropriate suffix for the sprinkler finish and then the appropriate suffix for the temperature rating to the sprinkler base part number.

Finish Suffix: Brass = A, Chrome = F, White Polyester = M-/W, Black Polyester = M-/B, and Black PTFE = N, ENT = JN Temperature Suffix ($^{\circ}F/^{\circ}C$): 135 $^{\circ}/57^{\circ}$ = A, 155 $^{\circ}/68^{\circ}$ = B, 175 $^{\circ}/79^{\circ}$ = D, 200 $^{\circ}/93^{\circ}$ = E, and 286 $^{\circ}/141^{\circ}$ = G

For example, sprinkler VK350 with a 1/2" thread, Brass finish and a 155 °F/68 °C temperature rating = Part No. 18259AB **Available Finishes And Temperature Ratings:** Refer to Table 1.

Accessories: (Also refer to the "Sprinkler Accessories" section of the Viking data book.)

Sprinkler Wrench: Standard Wrench: Part No. 10896W/B (available since 2000)

Sprinkler Cabinets:

Viking Technical Data may be found on The Viking Corporation's Web site at http://www.vikinggroupinc.com. The Web site may include a more recent edition of this Technical Data Page.

MICROFAST® QUICK **RESPONSE UPRIGHT SPRINKLER VK350 (K8.0)**

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

A. Six-head capacity: Part No. 01724A (available since 1971)

B. Twelve-head capacity: Part No. 01725A (available since 1971)

4. INSTALLATION

Refer to appropriate NFPA Installation Standards.

5. OPERATION

During fire conditions, the heat-sensitive liquid in the glass bulb expands, causing the glass to shatter, releasing the pip cap and sealing spring assembly. Water flowing through the sprinkler orifice strikes the sprinkler deflector, forming a uniform spray pattern to extinguish or control the fire.

6. INSPECTIONS, TESTS AND MAINTENANCE

Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.

7. AVAILABILITY

The Viking Microfast® Quick Response Upright Sprinkler VK350 is available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

TABLE 1: AVAILABLE SPRINKLER TEMPERATURE RATINGS AND FINISHES										
Sprinkler Temperature Classification	Sprinkler Nominal Temperature Rating ¹	Maximum Ambient Ceiling Temperature ²	Bulb Color							
Ordinary	135 °F (57 °C)	100 °F (38 °C)	Orange							
> Ordinary	155 °F (68 °C)	100 °F (38 °C)	Red							
Intermediate	175 °F (79 °C)	150 °F (65 °C)	Yellow							
Intermediate	200 °F (93 °C)	150 °F (65 °C)	Green							
	286 °F (141 °C)	225 °F (107 °C)	Blue							

Sprinkler Finishes: Brass, Chrome, White Polyester, Black Polyester, Black PTFE, and ENT

Corrosion-Resistant Coatings3: White Polyester, Black Polyester, and Black PTFE. ENT in all temperature ratings except 135 °F (57 °C)

Footnotes

¹ The sprinkler temperature rating is stamped on the deflector. ² Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction.

Refer to specific installation standards.

³ The corrosion-resistant coatings have passed the standard corrosion test required by the approving agencies indicated on pages 51c-e. These tests cannot and do not represent all possible corrosive environments. Prior to installation, verify through the end-user that the coatings are compatible with or suitable for the proposed environment. For automatic sprinklers, the coatings indicated are applied to the exposed exterior surfaces only. Note that the spring is exposed on sprinklers with Polyester, ENT, and PTFE coatings. For ENT coated automatic sprinklers, the waterway is coated.

MICROFAST® QUICK RESPONSE UPRIGHT SPRINKLER VK350 (K8.0)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

	Approval Chart 1 (UL) Microfast [®] Quick Response Upright Sprinkler VK350 Maximum 175 PSI (12 bar) WWP													
Base Part	SIN	SIN Thread Size Nominal K-Factor Overall Lo						Length (Refer also to Design Criteria.)						
Number'	_	NPT	BSP	U.S.	metric ²	ic ² Inches		cULus⁴	VdS	LPCB	CE			
> 18257	VK350	3/4"		8.0	115.2	2-5/16	59	A1, B2	A1	A1	B1 ⁷			
18278	VK350		20 mm	8.0	115.2	2-5/16	59	A1, B2	A1	A1	B1 ⁷			
18259 ⁹	VK350	1/2"	15 mm	8.0	115.2	2-5/16	59	A1, B2	A1		B1 ⁸			
			NOTICE - I	Product Be	elow - Limite	ed Availabil	ity (Conta	act Local Vikir	ng Office)					
06665B	VK350	3/4"		8.0	115.2	2-5/16	59	A1, B2	A1	A1	B1 ⁷			
14817	VK350		20 mm	8.0	115.2	2-5/16	59	A1, B2	A1	A1	B1 ⁷			
06764B ⁹	VK350	1/2"	15 mm	8.0	115.2	2-5/16	59	A1, B2	A1		A1 ⁸			
A - 135 °F (ł 286 °F (1 B - 155 °F (6	Ob 7 64 B° VK 350 1/2" 15 mm 8.0 115.2 2-5/16 59 A1, B2 A1 A1° Approved Temperature Ratings A -135 °F (57 °C), 155 °F (68 °C), 175 °F (79 °C), 200 °F (93 °C), and 286 °F (141°C) A1 5 A1 5 </th													
	Footnotes													

¹Base part number is shown. For complete part number, refer to Viking's current price schedule.

² Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.

³This table shows the listings and approvals available at the time of printing. Check with the manufacturer for any additional approvals.

⁴ Listed by Underwriters Laboratories Inc. for use in the U.S. and Canada.

⁵ cULus Listed as corrosion resistant.

⁶ Other colors are available on request with the same Listings and Approvals as the standard colors.

⁷ CE Certified, Standard EN 12259-1, EC-certificate of conformity 0832-CPD-2001 and 0832-CPD-2003.

⁸ CE Certified, Standard EN 12259-1, EC-certificate of conformity 0786-CPD-40278.

⁹ The 1/2" NPT Large Orifice Sprinkler is listed and approved for retrofit only when installed in accordance with NFPA 13.

DESIGN CRITERIA - UL (Also refer to Approval Chart 1)

cULus Listing Requirements:

The Microfast® Quick Response Upright Sprinkler VK350 is cULus Listed as indicated in Approval Chart 1 for installation in accordance with the latest edition of NFPA 13 for standard spray sprinklers.

- · Designed for use in Light and Ordinary Hazard occupancies.
- The sprinkler installation rules contained in NFPA 13 for standard spray upright sprinklers must be followed.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to page QR1-3 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.

MICROFAST® QUICK RESPONSE UPRIGHT SPRINKLER VK350 (K8.0)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

				Temperature KEY Finish A1X - Escutcheon (if applicable)							
Base Part	CIN	Thre	ad Size	Nomina	Nominal K-Factor Overall			FM Approvals ³			
Number ¹	SIN	NPT	BSP	U.S.	metric ²	Inches	mm	(Refer also to Design Criteria below			
18257	VK350	3/4"		8.0	115.2	2-5/16	59	A1, B2			
18278	VK350		20 mm	8.0	115.2	2-5/16	59	A1, B2			
18259⁵	VK350	1/2"	15 mm	8.0	115.2	2-5/16	59	A1, B2			
		ΝΟΤΙΟ	CE - Product	Below - Lin	nited Availabi	lity (Contact	Local Vikir	ng Office)			
06665B	VK350	3/4"		8.0	115.2	2-5/16	59	A1, B2			
14817	VK350		20 mm	8.0	115.2	2-5/16	59	A1, B2			
06764B⁵	VK350	1/2"	15 mm	8.0	115.2	2-5/16	59	A1, B2			
A - 135 °F (57 B - 155 °F (68	°C), 155 °F (°C), 175 °F (Approved 68 °C), 179 79 °C), 20	1 - Bras Polye 2 - ENT ⁶	Approved Finishes s, Chrome, White Polyester ⁴ , and Black ster ⁴							
	Footnotes										

¹ Base part number is shown. For complete part number, refer to Viking's current price schedule.

² Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.

³This table shows the FM Approvals available at the time of printing. Check with the manufacturer for any additional approvals.

⁴ Other colors are available on request with the same Approvals as the standard colors.

⁵ The 1/2" NPT Large Orifice Sprinkler is listed and approved for retrofit only when installed in accordance with NFPA 13.

⁶ FM approved as corrosion resistant.

DESIGN CRITERIA - FM

(Also refer to Approval Chart 2 above.)

FM Approval Requirements:

The Microfast[®] Quick Response Upright Sprinkler VK350 is FM Approved as a quick response **Non-Storage** upright sprinkler as indicated in the FM Approval Guide. For specific application and installation requirements, reference the latest applicable FM Loss Prevention Data Sheets (including Data Sheet 2-0). FM Global Loss Prevention Data Sheets contain guidelines relating to, but not limited to: minimum water supply requirements, hydraulic design, ceiling slope and obstructions, minimum and maximum allowable spacing, and deflector distance below the ceiling.

NOTE: The FM installation guidelines may differ from cULus and/or NFPA criteria.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to page QR1-3 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, FM Global, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

1. DESCRIPTION

Viking Microfast[®] and MicrofastHP[®] Quick Response Pendent Sprinklers are small, thermosensitive, glass-bulb spray sprinklers available in several different finishes and temperature ratings and K-Factors to meet design requirements. The special Polyester,Polytetrafluoroethylene (PTFE), and Electroless Nickel PTFE (ENT) coatings can be used in decorative applications where colors are desired. In addition, these coatings have been investigated for installation in corrosive atmospheres and are listed/approved as corrosion resistant as indicated in the Approval Charts. (Note: **FM Global approves ENT finish as corrosion resistant.** FM Global has no approval classification for PTFE and Polyester coatings as corrosion resistant.)

2. LISTINGS AND APPROVALS

ເປັນ cULus Listed: Category VNIV

KING

- **FM Approved:** Classes 2001, 2002, 2015, and 2017
 - NYC Approved: Calendar Number 219-76-SA and MEA 89-92-E, Volume 16 ABS Certified: Certificate 04-HS407984C-PDA
- VdS Approved: Certificates G4040095, G4040097, G4060056, G4060057, G4880045, G4930038, and G4980021
- LPC Approved: Ref. Nos. 096e/03 and 096e/04
- **CE Certified:** Standard EN 12259-1, EC-certificates of conformity 0786-CPD-40130, 0786-CPD-40170 and 0786-CPD-40279, 0832-CPD-2001, and 0832-CPD-2003

MED Certified: Standard EN 12259-1, EC-certificate of conformity 0832-MED-1003 and 0832-MED-1008 **NOTE:** Other International approval certificates are available upon request.

Refer to Approval Chart 1 and Design Criteria on page 41d for cULus Listing requirements and refer to Approval Chart 2 and Design Criteria on page 41f for FM Approval requirements that must be followed.

3. TECHNICAL DATA

Specifications:

Available since 1987.

Minimum Operating Pressure: 7 psi (0.5 bar)*

Maximum Working Pressure: Sprinklers 12282 and 12290 are rated for use with water working pressures ranging from the minimum 7 psi (0.5 bar) up to 250 psi (17 bar) for high-pressure systems. High-pressure (HP) sprinklers can be identified by locating "250" stamped on the deflector. All other Part Nos. not mentioned above are rated to a maximum 175 psi (12 bar) wwp.

Factory tested hydrostatically to 500 psi (34.5 bar)

Thread size: Refer to the Approval Charts

Nominal K-Factor: Refer to the Approval Charts

Glass-bulb fluid temperature rated to -65 °F (-55 °C)

Overall Length: Refer to the Approval Charts

*cULus Listing, FM Approval, and NFPA 13 installs require a minimum of 7 psi (0.5 bar). The minimum operating pressure for LPCB and CE Approvals ONLY is 5 psi (0.35 bar).

Material Standards:

Frame Casting: Brass UNS-C84400 or QM Brass for Sprinklers 12979 and 12282. Brass UNS-C84400 for all other sprinklers. Deflector: Phosphor Bronze UNS-C51000 or Copper UNS-C19500 for Sprinklers 12979, 06666B, and 06765B. Copper UNS-

C19500 for Sprinkler 12282. Phosphor Bronze UNS-C51000, Copper UNS-C19500 or Brass UNS-C26000 for Sprinkler 06720B. Brass UNS-C26000 for all other Sprinklers.

Bushing (for Sprinklers 06718B, 06720B, and 12290): Brass UNS-C36000

Bulb: Glass, nominal 3 mm diameter

Belleville Spring Sealing Assembly: Nickel Alloy, coated on both sides with PTFE Tape

Screw: Brass UNS-C36000

Pip Cap and Insert Assembly: Copper UNS-C11000 and Stainless Steel UNS-S30400

For PTFE Coated Sprinklers: Belleville Spring-Exposed, Screw-Nickel Plated, Pip Cap-PTFE Coated

For Polyester Coated Sprinklers: Belleville Spring-Exposed

For ENT Coated Sprinklers: Belleville Spring-Exposed, Screw and Pipcap - ENT coated.

12979, 066666B, and 06765B. Copper UNS 0 or Brass UNS-C26000 for Sprinkler 06720B

Replaces page 41a-f, dated June 28, 2013. (Changed 06932B to VK3311.)

Viking Technical Data may be found on The Viking Corporation's Web site at http://www.vikinggroupinc.com. The Web site may include a more recent edition of this Technical Data Page.

PN 06666B

PN 12979

MICROFAST® AND

MicrofastHP[®] QUICK

RESPONSE PENDENT SPRINKLERS

TECHNICAL DATA

MICROFAST® AND MicrofastHP® QUICK RESPONSE PENDENT SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

elephone: 209-945-9501 Technical Services: 077-304-5464 Fax: 209-010-1060 Elhall: techsvcs@vikingcorp.co

Ordering Information: (Also refer to the current Viking price list.)

Order Microfast[®] and MicrofastHP[®] Quick Response Pendent Sprinklers by first adding the appropriate suffix for the sprinkler finish and then the appropriate suffix for the temperature rating to the sprinkler base part number.

Finish Suffix: Brass = A, Chrome = F, White Polyester = M-/W, Black Polyester = M-/B, Black PTFE = N, and ENT = JN Temperature Suffix: 135 °F (57 °C) = A, 155 °F (68 °C) = B, 175 °F (79 °C) = D, 200 °F (93 °C) = E, and 286 °F (141 °C) = G For example, sprinkler VK302 with a 1/2" thread, Brass finish and a 155 °F (68 °C) temperature rating = Part No. 12979AB **Available Finishes And Temperature Ratings:**

Refer to Table 1.

Accessories: (Also refer to the "Sprinkler Accessories" section of the Viking data book.)

Sprinkler Wrenches:

A. Standard Wrench: Part No. 10896W/B (available since 2000).

- B. Wrench for Recessed Pendent Sprinklers: Part No. 16036W/B* (available since 2011)
- C. Optional Protective Sprinkler Cap Remover/Escutcheon Installer Tool** Part No. 15915 (available since 2010.)

**Allows use from the floor by attaching a length of 1" diameter CPVC tubing to the tool. Ideal for sprinkler cabinets. Refer to Bulletin F_051808.

Sprinkler Cabinets:

A. Six-head capacity: Part No. 01724A (available since 1971)

B. Twelve-head capacity: Part No. 01725A (available since 1971)

4. INSTALLATION

Refer to appropriate NFPA Installation Standards.

5. OPERATION

During fire conditions, the heat-sensitive liquid in the glass bulb expands, causing the glass to shatter, releasing the pip cap and sealing spring assembly. Water flowing through the sprinkler orifice strikes the sprinkler deflector, forming a uniform spray pattern to extinguish or control the fire.

6. INSPECTIONS, TESTS AND MAINTENANCE

Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.

7. AVAILABILITY

The Viking Microfast[®] and MicrofastHP[®] Quick Response Pendent Sprinklers are available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

MICROFAST® AND MicrofastHP® QUICK RESPONSE PENDENT SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

TABLE 1: AVAILABLE SPRINKLER TEMPERATURE RATINGS AND FINISHES											
Sprinkler Temperature Classification	Sprinkler Nominal Temperature Rating ¹	Maximum Ambient Ceiling Temperature ²	Bulb Color								
Ordinary	135 °F (57 °C)	100 °F (38 °C)	Orange								
Ordinary	155 °F (68 °C)	100 °F (38 °C)	Red								
Intermediate	175 °F (79 °C)	150 °F (65 °C)	Yellow								
Intermediate	200 °F (93 °C)	150 °F (65 °C)	Green								
High	286 °F (141 °C)	225 °F (107 °C)	Blue								

Sprinkler Finishes: Brass, Chrome, White Polyester, Black Polyester, Black PTFE, and ENT

Corrosion-Resistant Coatings³: White Polyester, Black Polyester, and Black PTFE. ENT in all temperature ratings except 135 °F (57 °C).

Footnotes

¹ The sprinkler temperature rating is stamped on the deflector.

² Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.

³ The corrosion-resistant coatings have passed the standard corrosion test required by the approving agencies indicated in the Approval Charts. These tests cannot and do not represent all possible corrosive environments. Prior to installation, verify through the end-user that the coatings are compatible with or suitable for the proposed environment. For automatic sprinklers, the coatings indicated are applied to the exposed exterior surfaces only. Note that the spring is exposed on sprinklers with Polyester, PTFE, and ENT coatings. For ENT coated automatic sprinklers, the waterway is coated.

MICROFAST® AND MicrofastHP® QUICK RESPONSE PENDENT SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

			Mi	crofas	st [®] and N	App licrofa	roval stHP® Q	Chart 1 (UL)) endent Sp	rinkle	rs A	Temperature Finish X ← Escutcheon	• KEY (if applicable)
Sprinkler Base	Sprinkler Thread Size Nominal Overall Base SIN K-Factor Length (Reference)							Listings and Approvals ³ er also to Design Criteria on page 41e.)					
Part No.1		NPT	BSP	U.S.	metric ²	Inche	s mm	cULus⁴	NYC⁵	VdS	LPCB	CE	۲
	•						Stand	lard Orifice					
12979	VK302	1/2"	15 mm	5.6	80.6	2-1/4	, 57	A1X, B1Y, C4, E4Z	A1X, B1Y				
18021	VK302	1/2"	15 mm	5.6	80.6	2-1/4	' 58	A1X, B1Y	A1X, B1Y	A2	A2X, B2Y	C2X, E2Y ¹¹	C2X, E2Y ¹⁴
							Larç	ge Orifice					
06666B	VK352	3/4"	20 mm	8.0	115.2	2-3/8	' 60	A1X, B1Y, C4, E4Z	A1X, B1Y	A2	A2X	C2 ¹¹	
06765B ¹⁵	VK352	1/2"	15 mm	8.0	115.2	2-3/8	' 60	A1X, B1Y, C4, E4Z	A1X, B1Y	A2		A2 ¹²	
					_		Sma	all Orifice ⁸				_	
06718B ⁹	VK329	1/2"	15 mm	2.8	40.3	2-3/16	ö" 56	A1X, B1Y	A1X, B1Y				
06720B ⁹	VK331	1/2"	15 mm	4.2	57	2-1/4	' 58	A1X, B1Y	A1X, B1Y				
06932B	VK3311		10 mm	4.2	57	2-3/8	, 60			A2		G3 ¹³	
Sprinkler		T 1		No	ominal	Maxir Ov	num 250 Stand erall	0 PSI (17 bar) WWP lard Orifice	Listin	gs and	Approvals	3	
Base	SIN	Inre	ad Size	К-	Factor	Le	Length (Refer also to D			esign	Criteria on	page 41e.)	
Part No ¹		NPT	BSP	U.S.	metric ²	Inche	s mm	cULus⁴	NYC ¹⁰	VdS	LPCB	CE	۲
12282	VK317	1/2"	15 mm	5.6	80.6	2-1/4	' 58	A1X, B1Y	A1X				
						Maxir	num 250 Sma) PSI (17 bar) WWP all Orifice ⁹					
1229010	VK342	1/2"	15 mm	2.8	40.3	2-3/16	5" 56	A1X, B1Y	A1X				
Approved Temperature RatingsA - 135 °F (57 °C), 155 °F (68 °C), 175 °F (79 °C), 200 °F (93 °C), and 286 °F (141 °C)Approved FinishesB - 135 °F (57 °C), 155 °F (68 °C), 175 °F (79 °C), and 200 °F (93 °C)1 - Brass, Chrome, White Polyester ^{6,7} , and Black PTFE ⁶ X - Standard surface-mounted escutcheo the Viking Microfast [®] Model F-1 Adjus EscutcheonC - 155 °F (68 °C), 175 °F (79 °C), and 286 °F (141 °C)2 - Brass, Chrome, White Polyester ⁷ , and Black PTFE ⁶ X - Standard surface-mounted escutcheo the Viking Microfast [®] Model F-1 Adjus EscutcheonD - 135 °F (68 °C), 175 °F (79 °C), and 286 °F (141 °C)3 - Brass and ChromeY - Standard surface-mounted escutcheo the Viking Microfast [®] Model E-1, E-2, or E-3 Rece EscutcheonE - 155 °F (68 °C), 175 °F (79 °C), and 286 °F (141 °C) G - 155 °F (68 °C)Y - Standard surface-mounted escutcheo or cessed with the Viking Micromatic [®] Model E-1, E-2, or E-3 Rece EscutcheonZ - Standard surface-mounted escutcheo or cessed with the Viking Micromatic [®] Model E-1, E-2, or E-3 Rece EscutcheonZ - Standard surface-mounted escutcheo or cessed with the Viking Micromatic [®] Model									ns escutcheon or F-1 Adjustable escutcheon or F-1 Adjustable h the Viking E-3 Recessed utcheon or re- ttic [®] Model E-1				
		_					Fo	ootnotes					
¹ Base part r ² Metric K-fac ³ This table s ⁴ Listed by L ⁵ Accepted fr ⁶ cULus Listr ⁷ Other color ⁸ Listings an Exception	number is sh ctor measure shows the lis Jnderwriters or use, City ed as corros rs are availa nd Approvals a: 4.2K sprin	nown. Fo ment sho stings an Laborato of New Y ion resis ble on re inited klers ma	r complete wwn is when d approvals pries Inc. fo fork Board of tant. quest with to Light Ha y be installe	part nur pressur s availat r use in of Stanc the sam azard Oc ed on hy	mber, refer to the is measure ole at the tin the U.S. ar dards and A he Listings a ccupancies ydraulically	to Viking' ed in Bar. ne of prir id Canad ppeals, C und Appro where al calculate	s current p When pre- titing. Cheo a. Calendar N Dovals as th lowed by d dry pipe	orice schedule. ssure is measured in kPa ck with the manufacturer lumber 219-76-SA. the standard colors. the installation standard systems where opining is	, divide the me for any addit ds being appli s corrosion re	etric K-fac ional app ied, with	ctor shown by provals. hydraulically r internally ga	10.0. calculated wet	systems only.

⁹ The sprinkler orifice is bushed.

¹¹ CE Certified, Standard EN 12259-1, EC-certificates of conformity 0832-CPD-2001 and 0832-CPD-2003.

- ¹² C Certified, Standard EN 12259-1, EC-certificate of conformity 0786-CPD-40279.
 ¹³ C Certified, Standard EN 12259-1, EC-certificate of conformity 0786-CPD-40130 and 0786-CPD-40170.
- ¹⁴ MED Certified, Standard EN 12259-1, EC-certificates of conformity 0832-MED-1003 and 0832-MED-1008.
- ¹⁵ The 1/2" NPT Large Orifice Sprinkler is Listed and Approved for retrofit only.

¹⁰Accepted for use, City of New York Department of Buildings, MEA Number 89-92-E, Vol. 16.

MICROFAST® AND MicrofastHP® QUICK RESPONSE PENDENT SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

DESIGN CRITERIA - UL (Also refer to Approval Chart 1 on page 41d)

cULus Listing Requirements:

Microfast[®] and MicrofastHP[®] Quick Response Pendent Sprinklers are cULus Listed as indicated in the Approval Chart for installation in accordance with the latest edition of NFPA 13 for standard spray sprinklers.

- Designed for use in Light and Ordinary Hazard occupancies (exception: small orifice sprinklers are limited to Light Hazard where allowed by the installation standards being applied, with hydraulically calculated wet systems only).
- The sprinkler installation rules contained in NFPA 13 for standard spray pendent sprinklers must be followed.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to page QR1-3 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.

Figure 4: Sprinkler VK302 Dimensions with the Model E-1 and E-2 Recessed Escutcheons

MICROFAST® AND MicrofastHP® QUICK RESPONSE PENDENT SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

			Mic	App crofast® Qu Maxin	roval Cha iick Response num 175 PSI (e Pendent (12 bar) WW	1) Sprinkle 'P	rs Temperature KEY Finish A1X ← Escutcheon (if applicable)		
Sprinkler	0.01	Threa	d Size	Nominal K-Factor Overa			.ength	FM Approvals ³		
Base Part No. ¹	e Part No. ¹ SIN NPT BSP		U.S.	metric ²	Inches	mm	(Refer also to Design Criteria below.)			
				rifice						
12979	VK302	1/2"	15 mm	5.6	80.6	2-1/4"	57	A2X, B2Y, C3, D3Z		
18021	VK302	1/2"	15 mm	5.6	80.6	2-1/4"	58	A2X, B2Y		
06666B	VK352	3/4"	20 mm	8.0	115.2	2-3/8"	60	A2X, B2Y, C3, D3Z		
06765B ⁷	VK352	1/2"	15 mm	8.0	115.2	2-3/8"	60	A2X, B2Y, C3, D3Z		
				Small Orifice⁴						
06718B ⁶	VK329	1/2"	15 mm	2.8	40.3	2-3/16"	56	A1X		
Approved A - 135 °F (57 °C), 200 °F (93 °C).	re Rating °C), 175 ° (141 °C)	js F (79 °C),		Approved Finis	shes	X - St M	Approved Escutcheons X - Standard surface-mounted escutcheon or the Viking Microfast® Model F-1 Adjustable Escutcheon			
B - 135 °F (57 °C), and 200 °F (93 C- 155 °F (68 °C), and 286 °F (14 D - 155 °F (68 °C (93 °C)	°Č), 175 ° °C), 200 ° 79 °C), ar	F (79 °C), F (93 °C), nd 200 °F	 1 - Brass and Chrome 2 - Brass, Chrome, White Polyester⁵, and Black Polyester⁵ 3 - ENT⁸ 				 Y - Standard surface-mounted escutcheon or the Viking Microfast® Model F-1 Adjustable Escutcheon or recessed with the Viking Micromatic® Model E-1, E-2, or E-3 Recessed Escutcheon Z - Standard surface-mounted escutcheon or recessed with the Viking Micromatic® Model E-1 			

Footnotes

¹ Base part number is shown. For complete part number, refer to Viking's current price schedule.

² Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.

³ This table shows the listings and approvals available at the time of printing. Check with the manufacturer for any additional approvals.

⁴ FM Approved as quick response control mode standard spray **Non-storage** sprinklers. For specific application and installation requirements, reference the latest applicable FM Loss Prevention Data Sheets (including Data Sheet 2-0).

⁵ Other colors are available on request with the same Listings and Approvals as the standard colors.

⁶ The sprinkler orifice is bushed.

⁷ The 1/2" NPT Large Orifice Sprinkler is Listed and Approved for retrofit only.

⁸ FM approved as corrosion resistant.

DESIGN CRITERIA - FM (Also refer to Approval Chart 2 above.)

FM Approval Requirements:

The sprinklers indicated in Approval Chart 2 are FM Approved as quick response **Non-storage** standard spray pendent sprinklers as indicated in the FM Approval Guide[†]. For specific application and installation requirements, reference the latest applicable FM Loss Prevention Data Sheets (including Data Sheets 2-0 and 8-9). FM Global Loss Prevention Data Sheets contain guidelines relating to, but not limited to: minimum water supply requirements, hydraulic design, ceiling slope and obstructions, minimum and maximum allowable spacing, and deflector distance below the ceiling.

NOTE: The FM installation guidelines may differ from cULus and/or NFPA criteria.

+Sprinklers VK302 and VK352 are also FM Approved as quick response **Rack Storage** standard spray pendent sprinklers. Refer to technical data page 131a-e for Intermediate Level In-Rack Sprinklers.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to page QR1-3 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, FM Global, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.