

TABLE OF CONTENTS

DIVISION 00 - PROCUREMENT AND CONTRACTING REQUIREMENTS

001116 INVITATION TO BID
 002113 INSTRUCTIONS TO BIDDERS
 003132 GEOTECHNICAL DATA

GEOTECHNICAL REPORT

004200 PROPOSAL

006000 PROJECT FORMS

SHOP DRAWING, PRODUCT DATA OR SAMPLE TRANSMITTAL FORM

REQUEST FOR INFORMATION FORM SUBSTITUTION APPLICATION FORM

007300 GENERAL AND SUPPLEMENTARY CONDITIONS

ADDENDUM TO CONSTRUCTION CONTRACT

DIVISION 01 - GENERAL REQUIREMENTS

011000 SUMMARY
012300 ALTERNATES
012500 SUBSTITUTION PROCEDURES
013100 PROJECT MANAGEMENT AND COORDINATION
013300 SUBMITTAL PROCEDURES
017700 CLOSEOUT PROCEDURES
017823 OPERATION AND MAINTENANCE DATA

017839 PROJECT RECORD DOCUMENTS

DIVISION 02 - EXISTING CONDITIONS

024119 SELECTIVE DEMOLITION

DIVISION 03 - CONCRETE

033000 CAST-IN-PLACE CONCRETE

DIVISION 04 - MASONRY

042000 UNIT MASONRY

047200 CAST STONE MASONRY

DIVISION 05 - METALS

051200 STRUCTURAL STEEL FRAMING

053100 STEEL DECKING

055000 METAL FABRICATIONS

DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES

061600 SHEATHING

DIVISION 07 - THERMAL AND MOISTURE PROTECTION

071416 COLD FLUID-APPLIED WATERPROOFING

072419 WATER-DRAINAGE EXTERIOR INSULATION AND FINISH SYSTEM (EIFS)

075419 POLYVINYL-CHLORIDE (PVC) ROOFING 076200 SHEET METAL FLASHING AND TRIM

078413	PENETRATION FIRESTOPPING
078446	FIRE-RESISTIVE JOINT SYSTEMS
079200	JOINT SEALANTS
DIVISION	N 08 - OPENINGS
081113	HOLLOW METAL DOORS AND FRAMES
081416	FLUSH WOOD DOORS
084113	ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS
087100	DOOR HARDWARE
088000	GLAZING
DIVISION	N 09 - FINISHES
092216	NON-STRUCTURAL METAL FRAMING
092900	GYPSUM BOARD
095113	ACOUSTICAL PANEL CEILINGS
096513	RESILIENT BASE AND ACCESSORIES
096813	TILE CARPETING
099123	
DIVICION	N 22 - PLUMBING
DIVISIO 1 221316	SANITARY WASTE AND VENT PIPING
221310	SANITARY WASTE AND VENT PIPING SANITARY WASTE PIPING SPECIALTIES
221319	
221329	SANITAR I SEWERAGE FUNIFS
DIVISION	N 23 - HEATING VENTILATING AND AIR CONDITIONING
230513	COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT
230517	SLEEVES AND SLEEVE SEALS FOR HVAC PIPING
230523	GENERAL-DUTY VALVES FOR HVAC PIPING
230529	HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT
230553	IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT
230719	HVAC PIPING INSULATION
230900	INSTRUMENTATION AND CONTROL FOR HVAC
230993	SEQUENCE OF OPERATIONS FOR HVAC CONTROLS
232113	HYDRONIC PIPING
232300	REFRIGERANT PIPING
238126	SPLIT-SYSTEM AIR-CONDITIONERS
238213	VALANCE HEATING AND COOLING UNITS
238233	CONVECTORS
238239	UNIT HEATERS
DIVISION	N 31 - EARTHWORK
312000	EARTH MOVING
DIVISION	N 32 - EXTERIOR IMPROVEMENTS
321313	CONCRETE PAVING

END OF TABLE OF CONTENTS

077200 ROOF ACCESSORIES

SECTION 001116 - INVITATION TO BID

PART 1 - GENERAL

1.1 PROJECT DESCRIPTION

- A. Project: St. Thomas More Elevator Addition
- B. Location: 3515 South 48th Avenue, Omaha, Nebraska, 68106

1.2 BID DUE DATE

- A. Bids for the construction of St. Thomas More Elevator Addition will be received by a representative of the Parish at the Parish Rectory, 4804 Grover, Omaha, Nebraska, until 2:00 pm, on May 6, 2015, at said office. Means of bid submittal shall be as indicated in the INSTRUCTIONS TO BIDDERS included in the bidding documents.
- B. Bids will be opened privately.

1.3 BIDDING DOCUMENTS

- A. The bidding documents may be examined at the following:
 - 1. Omaha Builder's Exchange, 4255 South 94th Street, Omaha, Nebraska 68127.
 - 2. F.W. Dodge Systems Company, 8529 K Street, Omaha, Nebraska 68127.
 - 3. Reed Construction Data Electronic Plan Room, www.reedconstructiondata.com.
 - 4. Office of the Architect, Leo A Daly, 8600 Indian Hills Drive, Omaha, Nebraska 68114.

1.4 DEPOSIT ON BIDDING DOCUMENTS

A. One copy of the bidding documents may be obtained at A&D Technical Supply between the hours of 8:00 a.m. to 5:00 p.m., Monday through Friday, upon deposit of fifty dollars (\$50.00). Additional sets or portions thereof will be paid for at the current rates of reproduction and are not returnable.

1.5 RIGHT OF OWNER

- A. No bidder may withdraw a bid within thirty (30) days after the receipt of bids.
- B. The Owner reserves the right to waive any informalities or to reject any or all bids.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

END OF SECTION 001116

SECTION 002113 - INSTRUCTIONS TO BIDDERS

PART 1 - GENERAL

1.1 PROJECT DESCRIPTION

A. The St. Thomas More School, herein called "Owner", will receive bids for the construction of the Elevator Addition project located at 3515 S. 48th Avenue, Omaha, Nebraska.

1.2 PROPOSALS

- A. Proposals will be received (from invited bidders) until 2:00 pm, local time, May 6th, 2015 at the St. Thomas More church rectory, 4804 Grover, Omaha, NE 68106. (The office entrance and parking are available behind the house.)
 - 1. Bids will be opened privately.
- B. Bids received after closing time will not be considered.
- C. Means of submittal delivery including all attachments thereto may be via courier, (or) mail (or electronic facsimile) at the option of the bidder. Receipt of the bid at the designated location prior to closing time remains the sole responsibility of the bidder regardless of the delivery method.

1.3 METHOD OF BIDDING

A. One combined proposal shall be submitted for all Work, including General Construction Work, Mechanical Work, and Electrical Work.

1.4 EXAMINATION OF PREMISES AND CONTRACT DOCUMENTS

- A. Before submitting a bid, each bidder must:
 - 1. Examine the Contract Documents thoroughly,
 - 2. Visit the premises to become familiar with local conditions that may in any manner affect performance of the Work,
 - 3. Become familiar with Federal, State and Local laws, ordinances, rules and regulations affecting performance of the Work, and
 - 4. Carefully correlate those observations with the requirements of the Contract Documents.
- B. The submission of a bid will serve as a representation by the bidder that they have complied with the requirements of the above paragraph.

1.5 PREPARATION OF PROPOSAL

- A. Each bidder must obtain a blank form of proposal from the office of the Architect or as attached herewith and prepare and submit a proposal thereon. Proposals from parties who are not known to be regularly and practically engaged in the class of Work called for by the Bidding Documents will not be considered.
- B. Each proposal (and the attached Bid Bond documents when required) must bear an original blue ink signature of the bidder and/or the agent of the bidder.
- C. Each proposal must be submitted in a sealed envelope bearing on the outside the name of the bidder, bidder's address, and the name of the Project for which the bid is submitted.

- D. The bid form provides for a base bid and one or more alternates. The Owner reserves the right to award the Contract on the basis of either the base bid or on the inclusion of any one or more of the alternates. Each proposal must contain a base bid or it will be rejected as not being responsive. Further, failure to bid on an alternate may result in disqualification of a proposal if such alternate is selected by the Owner.
- E. If forwarded by mail, the sealed envelope containing the bid must be enclosed in another envelope addressed as indicated in the Proposal Form.

1.6 BOND

A. The Owner has waived the requirement for the successful bidder to furnish performance and payment bonds in the full amount of the Contract. All subcontractors, where the subcontract exceeds \$2,500.00, shall furnish performance bond and labor and material payment bond with a surety licensed to conduct business in the State of Nebraska.

1.7 BIDDING DOCUMENTS

- A. The bidding documents may be examined at the following:
 - 1. Omaha Builder's Exchange, 4255 South 94th Street, Omaha, Nebraska 68127.
 - 2. F.W. Dodge Systems Company, 8529 K Street, Omaha, Nebraska 68127.
 - 3. Reed Construction Data Electronic Plan Room, www.reedconstructiondata.com.
 - 4. Office of the Architect, Leo A Daly, 8600 Indian Hills Drive, Omaha, Nebraska 68114.

1.8 RIGHT OF OWNER

- A. The Owner reserves the right to reject any or all bids or to waive any informalities in the bidding.
- B. No bidder may withdraw a bid for a period of thirty (30) days subsequent to the receipt of bids without the consent of the Owner.

1.9 TOUR OF EXISTING BUILDING

A. A tour of the existing building will be conducted at 2:00 p.m., CDT, on April 22, 2015 by representatives of the Owner and the Architect. The purpose of this tour is to familiarize the bidders with the existing conditions. No minutes or memoranda will be published as a result of this tour and it will be the responsibility of each bidder to be represented.

1.10 BID SECURITY

A. Bid security is not required on this project.

1.11 NEBRASKA SALES AND USE TAX

A. The Bidder is not required to include local option sales and use taxes in the proposal.

1.12 BUILDING PERMIT FEE

A. The Owner has paid to the City of Omaha Permits and Inspections Department, the building permit fee for this Project and has prepaid the energy/insulation fee. Bidders shall be responsible for all other required permits, including mechanical, electrical, and plumbing permits.

1.13 DEFINED TERMS

A. Terms used in these Instructions to Bidders which are defined in the General Conditions of the Contract for Construction, Document A201 – 2007 Edition, shall have the meanings assigned to them in the General Conditions.

1.14 INTERPRETATIONS

A. All questions about the meaning or intent of the Contract Documents shall be submitted to the Architect in writing. Replies will be issued by Addenda mailed or delivered to all parties recorded by the Architect as having received the Bidding Documents. Questions received less than eight calendar days prior to the date for receipt of bids will not be answered. Only questions answered by formal written Addenda will be binding. Oral and other interpretations or clarifications will be without legal effect.

1.15 POST BID INFORMATION

- A. Unless waived by the Architect, the Bidder shall, within seven days of notification of selection for the award of a Contract for the Work, submit the following information to the Architect:
 - 1. A designation of the Work to be performed by the Bidder with Bidder's own forces.
 - 2. The proprietary names and the suppliers of principal items or systems of material and equipment proposed for the Work.
 - A list of names of the subcontractors or other persons or organizations (including those who are to furnish materials or equipment fabricated to a special design) proposed for the principal portions of the Work.
- B. The Bidder will be required to establish to the satisfaction of the Architect and the Owner the reliability and responsibility of the proposed subcontractors to furnish and perform the Work described in the sections of the Specifications pertaining to such proposed subcontractors respective trades.
- C. Prior to the award of the Contract, the Architect will notify the Bidder in writing if either the Owner or the Architect, after due investigation, has reasonable and substantial objection to any person or organization on such list. If the Owner or Architect has a reasonable and substantial objection to any person or organization on such list, and refuses in writing to accept such person or organization, the Bidder may, at Bidder's option, (1) withdraw the bid, or (2) submit an acceptable substitute subcontractor with an increase in the bid price to cover the difference in cost occasioned by such substitution. The Owner may, at Owner's discretion, accept the increased bid price or disqualify the Bidder.
- D. Subcontractors and other persons and organizations proposed by the Bidder and accepted by the Owner and the Architect must be used on the Work for which they were proposed and accepted and shall not be changed except with the written approval of the Owner and the Architect.

PART 2 - PRODUCTS - NOT USED

PART 3 - EXECUTION - NOT USED

END OF SECTION 002113

SECTION 003132 - GEOTECHNICAL DATA

PART 1 - GENERAL

1.1 REPORTS

- A. This section indicates the status of soil test reports relative to the Project site.
- B. Subsoil Information.
 - 1. Soil borings for design purposes have been made at the site. A copy of the geotechnical report is attached at the end of this Section. The location and log of each boring is shown in the Contract Documents for the Contractor's information. The depth of the water table at the time the borings were made is shown on the log. The Contractor is expected to have examined the site and the record of the investigation, and to have decided independently the character of the materials to be encountered.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

END OF SECTION 003132

Elevator and Vestibule Addition 3515 South 48th Avenue Omaha, Nebraska

> March 20, 2015 Terracon Project No. 05155004

Prepared for:

St. Thomas More Catholic Church Omaha, Nebraska

Prepared by:

Terracon Consultants, Inc. Omaha, Nebraska

terracon.com

March 20, 2015

St. Thomas Moore Catholic Church 4804 Grover Street Omaha, NE 68106

Attn:

Rev. Ryan Lewis

Re:

Geotechnical Engineering Report

Elevator and Vestibule Addition

3515 South 48th Avenue

Omaha, Nebraska

Terracon Project No. 05155004

Dear Rev. Lewis:

Terracon Consultants, Inc. (Terracon) has completed a subsurface exploration for the referenced project. The attached report presents the results of the subsurface exploration and provides geotechnical recommendations regarding earthwork, subgrade preparation for floor slabs and pavements, and design of footing foundations for the project.

We appreciate the opportunity to work with you on this project and look forward to providing the recommended construction observation/testing services. If you have any questions regarding the attached report, or if we may be of further service, please contact us.

Sincerely,

Terracon Consultants, Inc.

Amlin Denne

Amelia C. Ganze, P.E.

Project Geotechnical Engineer

ACG/EDP:acg/nlm

Distribution: Addressee (2 bound, pdf)

Edward D. Prost, Jr., P.E.

Sr. Project Geotechnical Engineer

TABLE OF CONTENTS

EVE	>! !T!\/E	E SUMMARY	<u>Page</u>
1.0		RODUCTION	
2.0		DJECT INFORMATION	
2.0	2.1	Site Location and Description	
	2.1	Project Description	
3.0		SURFACE CONDITIONS	
3.0			
	3.1	Mapped Soil Units	
	3.2	Typical Profile	
4.0	3.3	Groundwater COMMENDATIONS FOR DESIGN AND CONSTRUCTION	
4.0			
	4.1	Geotechnical Considerations	
	4.2	Site Preparation and Earthwork	
		4.2.1 Site Stripping	
		4.2.2 Structural Fill Material Requirements	
		4.2.4 Utility Trench Backfill	
		4.2.5 Construction Adjacent to Existing Footings	
		4.2.6 Construction Considerations	
		4.2.7 Exterior Grading	9
	4.3	Spread Footing Foundations	
		4.3.1 Design Recommendations	
		4.3.2 Construction Considerations	
	4.4	4.3.3 Construction Adjacent to the Existing Structures	11
	4.4	Deep Foundations	
		4.4.1 Discussion	
		4.3.2 Design Recommendations for Axial Loads	
		4.4.4 ACIP Pile Installation	
		4.4.5 Drilled Shaft Installation	
	4.5	Seismic Considerations	
	4.6	Floor Slabs	16
		4.6.1 Design Recommendations	16
		4.6.2 Construction Considerations	
	4.7	Lateral Earth Pressures	
		4.7.1 Design	
	4.0	4.7.2 Drainage Systems	
	4.8	Exterior Slabs	
5.0	GEN	IERAL COMMENTS	20

TABLE OF CONTENTS (CONTINUED)

APPENDIX A - FIELD EXPLORATION

Exhibit A-1 Site Location Plan Exhibit A-2 Boring Location Plan

Exhibit A-3 Field Exploration Description

Exhibit A-4 Boring Logs

APPENDIX B - LABORATORY TESTING

Exhibit B-1 Laboratory Testing Description

APPENDIX C - SUPPORTING DOCUMENTS

Exhibit C-1 General Notes

Exhibit C-2 Unified Soil Classification System Summary

Exhibit C-3 References

Elevator and Vestibule Addition • Omaha, Nebraska March 20, 2015 • Terracon Project No. 05155004

EXECUTIVE SUMMARY

A geotechnical engineering report has been completed for the proposed elevator and vestibule addition to the St. Tomas More School located at 3515 South 48th Avenue in Omaha, Nebraska. The field exploration included one boring within the proposed addition footprint. Laboratory tests were performed on the samples recovered from the borings. Typed boring logs are included in Appendix A.

Based on the information obtained from our subsurface exploration, the site can be developed for the proposed project. Following is a summary of geotechnical findings, conditions, and recommendations:

- The borings encountered fill soils consisting of lean clay to a depth of about 5 ½ feet. Native lean clay loess and glacial till soils were encountered underlying the fill to the completed depths of the borings. Groundwater was encountered at a depth of about 29 feet while drilling the boring, and at a depth of about 23 feet after the boring was completed.
- The fill generally appears to be moderately to poorly compacted, the risks posed by the fill can be eliminated by removing and replacing it. It appears that this will occur incidentally with the proposed grading.
- A granular capillary moisture break is recommended immediately below grade-supported addition floor slabs, in turn underlain by a layer of structural fill.
- Support of the addition on footing and mat foundations on native loess soils or newly placed fill extending to native loess soils appears feasible. The addition may also be supported on drilled shaft or ACIP pile foundations.
- The on-site soils generally appear suitable for reuse as low-plasticity cohesive fill unless restricted due to environmental concerns; confirmatory testing is recommended during construction. Moisture conditioning will be required for the on-site soils.
- A foreign odor indicating the presence of petroleum was noted in one of the soil samples. If these soils are not used as backfill, it may need to be disposed of in a landfill or by landfarming.
- Close monitoring of the construction operations discussed herein will be critical in achieving the design subgrade and foundation support. We therefore recommend that Terracon be retained to monitor this portion of the work.

This summary should be used in conjunction with the entire report for design purposes. It should be recognized that details were not included or fully developed in this section, and the report must be read in its entirety for a comprehensive understanding of the items contained herein. The section titled **GENERAL COMMENTS** should be read for an understanding of the report limitations.

GEOTECHNICAL ENGINEERING REPORT ELEVATOR AND VESTBULE ADDITION 3515 SOUTH 48TH AVENUE OMAHA, NEBRASKA

Terracon Project No. 05155004 March 20, 2015

1.0 INTRODUCTION

A geotechnical engineering report has been completed for the proposed elevator and vestibule addition to the St. Thomas More School at 3515 South 48th Avenue in Omaha, Nebraska. The field exploration included one boring in order to obtain information on the subsurface conditions. The individual boring log is included in Appendix A. The boring location is shown on the Boring Location Plan, also included in Appendix A.

This study was performed in general accordance with our proposal number P05140914 dated December 12, 2014.

The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

soil conditions

drilled shaft recommendations

groundwater conditions

floor slab design and construction

earthwork

lateral earth pressures and drainage

 footing foundation design and construction

2.0 PROJECT INFORMATION

2.1 Site Location and Description

Item	Description
Location	West side of existing St. Thomas More School in Omaha, Nebraska. Latitude 41° 13.58' N / 95° 59.19' W

Elevator and Vestibule Addition • Omaha, Nebraska March 20, 2015 • Terracon Project No. 05155004

Item	Description	
Existing improvements	Existing school building to east of site. Site is currently a paved walkway and entrance to the school. The existing building is a three-story structure with no below grade level in the vicinity of the proposed addition. The lower level of the building walks out on the west side of the building. Foundation plans were provided to us by Mr. Dennis Young of Leo A Daly that indicate the existing building is supported on 12-inch diameter pile. Mr. Young indicated the foundations were thought to be drilled shafts extending to about 30 to 35 feet below the lower level grade.	
Ground cover	Concrete and grass areas.	
Existing topography	Based on the Douglas County GIS database and confirmed by our elevation shots during our site reconnaissance, the ground surface is relatively flat with a surface elevation of roughly 1152 to 1154 feet. The grade west of the site slopes down significantly to the street level which is about elevation 1142 feet.	
Site history	The existing school was reportedly constructed in the late 1950's.	

2.2 Project Description

Item	Description	
Structures	An elevator and vestibule addition are planned at the existing west entrance to the school building. The addition will be roughly 20 feet by 18 feet in plan and will attach to the existing structure.	
Building construction	Building construction was not provided, but is anticipated to include cast in place concrete or block construction.	
Finished floor elevation	Estimated to be within about 1 foot of existing grade and will match the existing structure.	
Maximum loads	We understand the elevator structure will have dimensions of 9.75 feet by 19.5 feet with an average bearing pressure of about 1,500 psf. Based on this we understand the load of the structure to be on the order of 285 kips.	
The pile cap or pit slab is anticipated to extend about 7 feet be the lower finish floor level. The elevator sump pit is anticipated be up to 5 or 6 feet below grade.		
Site retaining walls	None.	
Site grading	Grade changes are anticipated to include up to about 1 foot of cut and/or fill.	

Should any of the above information or assumptions be inconsistent with the planned construction or site development, please let us know so we may make any necessary modifications to this report.

Elevator and Vestibule Addition • Omaha, Nebraska March 20, 2015 • Terracon Project No. 05155004

3.0 SUBSURFACE CONDITIONS

3.1 Mapped Soil Units

Surface soils at the project site were mapped as part of the effort to develop the Douglas County NRCS-USDA Soil Survey. According to this document, the Urban land – Udorthents- Pohocco complex is mapped at the site. These soils consist of disturbed silty loess and may have been considerably altered by grading associated with urban development. They have a moderate to high frost potential and a low shrink-swell potential. The depth to the seasonal high ground water level is greater than 6 feet below the ground surface.

Additional information is presented in the Soil Survey of Douglas and Sarpy Counties, Nebraska.

3.2 Typical Profile

Subsurface conditions in the borings can be generalized as follows:

Description	Approximate Depth to Bottom of Stratum	Material Encountered	Consistency/ Density
Surface:	N/A	Grass	N/A
Stratum 1 (Fill)	5.5 ft	Lean Clay ¹	N/A
Stratum 2 (Loess)	39 ft	Lean Clay	Stiff to Medium Stiff
Stratum 3 (Glacial Till)	To termination depth of boring	Lean to Fat Clay	Very Stiff

^{1.} A foreign odor, possibly a VOC, was noted at a depth of about 4.5 feet

Conditions encountered at the boring location are indicated on the individual boring log. Additional information is presented on the boring log in Appendix A. Stratification boundaries on the boring log represent the approximate location of changes in soil types; in-situ, the transition between materials may be gradual.

Variations could occur across the site. Previous grading and construction may have created additional variations.

Elevator and Vestibule Addition • Omaha, Nebraska March 20, 2015 • Terracon Project No. 05155004

3.3 Groundwater

The borehole was observed while drilling and completion of drilling for the presence and level of groundwater. The water levels observed are noted on the attached boring log, and are summarized below.

Boring Number	Depth to groundwater while drilling, ft.	Depth to groundwater after drilling, ft.
B-1	29	23

A relatively long period of time is necessary for a groundwater level to develop and stabilize in a borehole. Longer term monitoring in cased holes or piezometers would be required for a more accurate evaluation of the groundwater conditions.

Groundwater level fluctuations occur due to seasonal variations in the amount of rainfall, runoff, and other factors not evident at the time the borings were performed. Therefore, groundwater levels during construction or at other times in the life of the structures may be higher or lower than the levels indicated on the boring logs. It is also our experience that perched water can develop overlying compacted clay fill. The possibility of groundwater level fluctuations and development of perched water conditions should be considered when developing the design and construction plans for the project.

4.0 RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION

4.1 Geotechnical Considerations

We anticipate existing utility lines extend across the site. It is our experience that poorly compacted backfill is commonly found in utility line trenches and adjacent to existing foundations. Recommendations concerning the utility lines and backfill are presented in subsection **4.3 Site Preparation and Earthwork**.

Existing fill was encountered in the boring. Terracon is not familiar with compaction specifications associated with the existing fill, and has not been provided any reports of observations or density tests performed during fill placement. Any such records would aid our evaluation of the existing fill.

There is a risk to the owner when floor slabs and footings are constructed on or above existing fill material due to potential variations in composition and compaction. The fill poses a risk of larger than tolerable settlement. However, it appears the fill soils will be removed incidentally with grading.

Elevator and Vestibule Addition • Omaha, Nebraska March 20, 2015 • Terracon Project No. 05155004

It should be noted that a foreign odor, possibly a VOC was encountered in one of the fill soil samples. This report is not intended to address environmental concerns. An environmental assessment would be required for this purpose. We postulate the soil may have been brought to the site or a release occurred during the initial grading and construction for the existing building. If these soils are to be removed from the site they may need to be disposed of via a landfill or by landfarming. If the soils are used for backfill or remain below the floor slabs and vapor intrusion is a concern, consideration could be given to installation of a passive ventilation system, or a vapor intrusion barrier. Terracon can provide additional details regarding vapor mitigation design, or disposal of the soils upon request.

4.2 Site Preparation and Earthwork

4.2.1 Site Stripping

Stripping of existing sidewalks, pavements, vegetation, organic topsoil, and other materials unsuitable for re-use as engineered fill is recommended within all cut, fill, and building areas. A typical stripping depth of about 6 to 9 inches is expected to be adequate in most areas. However, areas of both deeper and shallower stripping could be encountered. A Terracon geotechnical representative should help evaluate actual stripping depths at the time of construction.

It is our experience that poorly compacted backfill is commonly found adjacent to existing foundations and in utility line trenches. Utility lines should be re-routed outside of the addition area. Whether the utility lines are abandoned or not, any poorly compacted backfill above the lines should be removed and replaced, as well as any poorly compacted backfill adjacent to existing foundations.

We recommend site stripping and building pad preparation, as discussed in the following paragraphs, extend to a distance of at least 5 feet beyond the new structure and foundation perimeters, where feasible. However, alongside the existing building, excavations should not undermine existing foundations or floor slabs. As discussed in subsection **4.3.5 Construction Considerations**, we recommend excavations not extend below bearing level of existing footings.

Following stripping, areas to receive fill should be proofrolled. Proofrolling aids in providing a firm base for compaction of fill and delineating soft or disturbed areas that may exist below subgrade level. Unsuitable areas observed at this time should be improved by compaction or by undercutting and placement of suitable compacted fill. Proofrolling may be accomplished with a fully loaded, tandem-axle dump truck or other equipment providing an equivalent subgrade loading. A minimum gross weight of 25 tons is recommended for the proofrolling equipment.

Elevator and Vestibule Addition • Omaha, Nebraska March 20, 2015 • Terracon Project No. 05155004

Terracon should be retained during construction to observe stripping, site preparation, and subgrade preparation. Terracon can assist in identifying poorly compacted or unstable fill that should be undercut and removed, as well as identifying additional corrective measures that may become apparent during construction.

4.2.2 Structural Fill Material Requirements

Structural fill should meet the following material property requirements:

Fill Type ¹	USCS Classification	Acceptable Location for Placement		
Low-plasticity, cohesive soil	CL $(LL \le 45 \text{ and } 10 \le Pl \le 20)^2$	All locations and elevations.		
Granular base ³	SP, SW, GW	Directly below slabs-on-grade.		
Drainage fill 4	SP, SW, GP, GW	Behind retaining walls.		
On-Site Soil ⁵	CL	Suitable for use as fill in accordance with the requirements of Low-plasticity, cohesive soil above.		

- 1. Structural fill should consist of low plasticity cohesive soils or approved granular materials that are free of organic matter, debris, and contamination. Frozen material should not be used, and fill should not be placed on a frozen subgrade. Each proposed fill material type should be sampled and evaluated by the geotechnical engineer prior to its delivery and/or use.
- 2. LL = Liquid Limit, PI = Plasticity Index.
- 3. A material similar to NDOR Crushed Rock for Base Course, with 6% or less fines (material passing the #200 sieve). Terracon can perform gradation tests on proposed materials, or review gradations of proposed materials generated by contractors or suppliers.
- 4. Well-graded, free-draining granular material. A general gradation should be 100% passing the 1½-inch sieve, about 40 percent passing the No. 10 sieve, and less than 6 percent fines. NDOR 47B Fine Aggregate For Concrete or approved alternate. Terracon can review proposed materials.
- 5. Sorting of on-site soils containing debris, organics, etc., will be necessary. Delineation of unsuitable on-site soils should be performed in the field by a Terracon representative. Moisture conditioning of the on-site soils will be necessary to facilitate compaction.

Terracon should be retained to evaluate proposed fill materials, including sampling and performing laboratory tests on proposed fill to evaluate compliance with the project specifications. We can also review data for proposed materials which are generated by the contractor or suppliers.

4.2.3 Structural Fill Compaction Requirements

Item	Description
Fill Lift Thickness ¹	8 inches or less in loose thickness
Compaction Requirements ²	

Elevator and Vestibule Addition Omaha, Nebraska March 20, 2015 Terracon Project No. 05155004

Item	Description	
All locations and elevations	95% of the materials standard Proctor maximum dry density (ASTM D 698), or 65% of the material's relative density (ASTM D 4253/ 4254).	
Moisture Content - Cohesive Soil	Within the range of -1 to +3 percent of the optimu moisture content value as determined by the standard Proctor test at the time of placement are compaction	
Moisture Content - Granular Material ³	Workable moisture levels	

- 1. Thinner lifts may be required in confined areas or within excavations, or when hand-operated compaction equipment is used.
- 2. We recommend that engineered fill be tested for moisture content and compaction during placement. Should the results of the in-place density tests indicate the specified moisture or compaction limits have not been met, the area represented by the test should be reworked and retested as required until the specified moisture and compaction requirements are achieved.
- Specifically, moisture levels should be maintained low enough to allow for satisfactory compaction
 to be achieved without the cohesionless fill material pumping when proofrolled or containing
 excess water (ponding).

We should be retained to monitor fill placement, and to perform field density tests as each lift of fill is placed in order to evaluate compliance with the design requirements. Terracon should be retained to observe and test floor slab subgrades immediately prior to paving.

4.2.4 Utility Trench Backfill

All trench excavations should be made with sufficient working space to permit construction including backfill placement and compaction. If utility trenches are backfilled with relatively clean granular material, they should be capped with pavement or at least 18 inches of cohesive fill to reduce the infiltration and conveyance of surface water through the trench backfill. We also recommend that all utility trenches be plugged with a clay core at locations where they enter under the new building to prevent the utility trench from being a route for water to migrate into the building envelope.

4.2.5 Construction Adjacent to Existing Footings

Care should be taken to avoid undermining existing foundations and grade-supported slabs. Performing test pits at the onset of construction is recommended to verify bearing levels of existing footings.

We understand the addition will match the lower floor level of the existing building. We recommend no excavations extend below the bearing level of existing foundations within 5 feet of the existing footings. Beyond this distance, excavations should slope down at an inclination of 2H:1V or flatter. Should excavations closer to the existing footings or extending more than 2 feet below bearing level of the existing footings be required, Terracon should be consulted regarding

Elevator and Vestibule Addition • Omaha, Nebraska March 20, 2015 • Terracon Project No. 05155004

requirements for sloping, shoring, bracing, or underpinning based on actual conditions encountered during construction.

We are available to participate in further discussions concerning construction issues and coordination, to help protect the existing footings.

4.2.6 Construction Considerations

Any areas of standing surface water should be drained as far in advance of construction as possible.

The native clays encountered in the borings will be sensitive to disturbance from construction activity and water seepage. If precipitation occurs immediately prior to or during construction, the near-surface clay soils could increase in moisture content and become more susceptible to disturbance. Construction activity should be monitored, and should be curtailed if the construction activity is causing subgrade disturbance. A Terracon representative can help with monitoring and developing recommendations to avoid subgrade disturbance.

Surface water should not be allowed to pond on the site and soak into the soil during construction. Construction staging should provide drainage of surface water and precipitation away from the building. Any water that collects over or adjacent to construction areas should be promptly removed, along with any softened or disturbed soils. Surface water control in the form of sloping surfaces, drainage ditches and trenches, and sump pits and pumps will be important to avoid ponding and associated delays due to precipitation and seepage.

Upon completion of filling and grading, care should be taken to maintain the subgrade moisture content prior to construction of floor slabs. Construction traffic over the completed subgrade should be avoided to the extent practical. The site should also be graded to prevent ponding of surface water on the prepared subgrades or in excavations. If the subgrade should become frozen, desiccated, saturated, or disturbed, the affected material should be removed or these materials should be scarified, moisture conditioned, and recompacted prior to floor slab and pavement construction.

As a minimum, all temporary excavations should be sloped or braced as required by Occupational Safety and Health Administration (OSHA) regulations to provide stability and safe working conditions. Temporary excavations will probably be required during grading operations. The grading contractor, by his contract, is usually responsible for designing and constructing stable, temporary excavations and should shore, slope or bench the sides of the excavations as required, to maintain stability of both the excavation sides and bottom. All excavations should comply with applicable local, state and federal safety regulations, including the current OSHA Excavation and Trench Safety Standards.

Elevator and Vestibule Addition Omaha, Nebraska March 20, 2015 Terracon Project No. 05155004

4.2.7 Exterior Grading

Poor site drainage and ponding of surface water can increase the potential for frost heave or settlement within the native or recompacted clay soils or clay fill. Excessive moisture can reduce the soil's bearing capacity and contribute to slab settlement and cracking.

Finished grading slopes should promote drainage away from the building. We recommend final grades for seeded and landscaped areas be sloped at least 5 percent within 10 feet around the building to direct surface water well away from the building. We recommend cohesive backfill be placed in utility trenches and adjacent to building foundations, and this fill be compacted to at least 95 percent of standard Proctor maximum dry density to help prevent surface water infiltration. Roof drains should be extended to discharge on pavements or in lawn areas more than 5 feet from the building. Pavements or sidewalks installed adjacent to the building should slope away from the building at a grade of 2% or more.

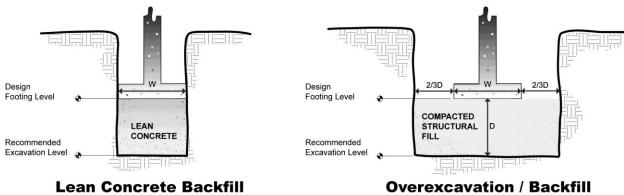
Overwatering of grass or landscaping vegetation is a significant source of water, and should be avoided near the building. Sprinkler heads should be adjusted to miss the exterior building wall. Automated watering systems should be programmed to not run after natural rain events, and to not overwater. Any utility leaks should be promptly repaired. Lining the bottom of irrigated planter areas along the building with an impermeable moisture barrier, and installing tile lines leading to gravity outlets or sump pits and pumps, would also help to control surface water that infiltrates into these features.

4.3 Spread Footing Foundations

4.3.1 Design Recommendations

In our opinion, the proposed addition can be supported by a shallow, mat footing foundation system bearing on tested and approved native clay soils or newly placed compacted fill extending to approved native clay soil. Design recommendations for shallow foundations for the proposed structure are presented in the following table.

Description	Column	Wall	
Net allowable soil bearing pressure (soil) 1	1,500 psf	1,500 psf	
Minimum dimensions	30 inches	18 inches	
Minimum embedment below finished grade ²	42 inches	42 inches	
Estimated total settlement ³	<1 inch	<1 inch	
Estimated differential settlement ³	<2/3 inch between columns	<2/3 inch over 40 feet	



Description	Column	Wall
-------------	--------	------

- 1. The recommended net allowable bearing pressure is the pressure in excess of the minimum surrounding overburden pressure at the footing base elevation. Assumes any low-density or unstable fill, or disturbed soils, if encountered, will be undercut and replaced with engineered fill.
- 2. For frost protection and to reduce the effects of seasonal moisture variations in the subgrade soils. If construction extends into freezing weather, we recommend that either all footings extend to frost depth (as measured from adjacent grade at the time of construction) or that the foundations be protected from the elements by straw, frost blankets, or similar means.
- 3. The foundation settlement will depend upon the variations within the subsurface soil profile, the structural loading conditions, the embedment depth of the footings, the thickness of compacted fill, and the quality of the earthwork operations. The above settlement estimates are based on a maximum footing size of 9.75 feet by 19.5 feet for the mat footing, 2 feet for continuous footings, and relatively uniform loading.

4.3.2 Construction Considerations

Terracon should be retained to observe and test the bearing materials exposed in all foundation excavations. If unsuitable bearing materials are encountered in footing excavations, the excavations should be extended deeper to suitable materials. The footings could bear directly on these materials at the lower level or on lean concrete backfill placed in the excavations. The footings could also bear on approved, properly compacted backfill extending down to the suitable materials. Overexcavation for compacted backfill placement below footings should extend laterally at least 8 inches beyond the edges of the footings for each foot of overexcavation depth below footing base elevation. The overexcavation should then be backfilled up to the footing base elevation with engineered fill placed and compacted in accordance with recommendations provided in subsection 4.3 Site Preparation and Earthwork. Schematics of these alternatives are presented in the adjacent figure.

NOTE: Excavations in sketches shown vertical for convenience. Excavations should be sloped as necessary for safety.

The clay soils encountered on this site are susceptible to disturbance from construction activities, particularly if the soils have high natural moisture contents or become wetted by

Elevator and Vestibule Addition • Omaha, Nebraska March 20, 2015 • Terracon Project No. 05155004

surface water or seepage. Care should be taken during excavation and construction of footings to avoid disturbing the bearing soils. The base of all foundation excavations should be free of water and loose material prior to placement of concrete. Concrete should be placed within a few hours after excavating to reduce disturbance of the bearing materials. If the materials at bearing level become excessively dry, disturbed or saturated, the affected material should be removed prior to placing concrete. A 2- to 3-inch lean concrete "mud mat" could be placed in the base of the foundation excavations to reduce the potential for disturbance of bearing soils and provide a stable working surface for placement of reinforcing steel.

4.3.3 Construction Adjacent to the Existing Structures

We recommend information concerning foundation types, bearing levels, design pressures, and subgrade preparation for the existing building be researched during project design. We recommend that available records (such as previous soils reports, construction plans) and interviews with personnel familiar with the structures be collected and reviewed prior to starting construction of the addition. Test pits can be performed to verify bearing levels and supporting soils below the existing structure. We would be pleased to assist in evaluating this information with respect to the proposed construction.

New foundations placed adjacent to existing building foundations and slabs may cause some additional settlement of the existing structures. To help reduce this effect, new footings placed near existing footings should bear at approximately the same elevation as the existing footings. The clear distance between new footings and existing footings bearing at the same depth should at least equal the base width of the new footing.

Since the new structure will attach to the existing facilities, connections with sufficient flexibility to accommodate independent movement should be utilized. Differential settlement between new and existing structures may approach the maximum total settlement estimated in this report for the new foundations. New foundations should not be within the active zone of existing soil retaining or basement walls, otherwise structural analysis would be required to evaluate the effect of the footing load on the existing wall.

4.4 Deep Foundations

4.4.1 Discussion

As an alternative, the proposed addition can be supported by a deep foundation system, if desired. Design recommendations for drilled shafts and ACIP pile foundations for the proposed addition are presented in the following subsections. If other foundation systems are considered (e.g., driven piles), we should be contacted for further discussions and recommendations.

4.3.2 Design Recommendations for Axial Loads

Soil strength parameters for use in design of augered cast-in-place (ACIP) piles and drilled shafts were determined from the boring information and laboratory test results. Based on this

Elevator and Vestibule Addition • Omaha, Nebraska March 20, 2015 • Terracon Project No. 05155004

information, the following skin friction and end bearing values may be used for ACIP piles or drilled shafts for this project.

Soil Type	Depth (feet)	Allowable Compressive Skin Friction (psf) 3,5	Allowable End Bearing (psf) ⁴
Loess	0 – 39	400 ¹	2,500 ²
Glacial Till	39 – 50	800	9,000 ²

- 1. Compressive skin friction should be neglected within 3½ feet of adjacent grade for frost protection.
- 2. Requires a minimum 5 foot penetration into layer.
- 3. Includes a factor of safety of about two.
- 4. Includes a safety factor of about three.
- 5. Allowable tensile uplift capacities may be estimated using 70% of the allowable compressive skin friction in addition to the effective weight of the foundation concrete. Continuous reinforcing is required throughout the pile length used to resist uplift loads.

Allowable compressive capacities may be computed by multiplying the embedded surface area of the pile in a particular depth zone by the skin friction value for that zone and adding the actual end area of the pile times the end bearing value. We recommend a continuous center bar be to the length of a pile used to resist uplift loads.

The design parameters above assume that a pile load test will not be completed for this project. Allowable design pile load capacities confirmed by performing a load test may exceed the capacities calculated using the recommended design skin friction and end-bearing values discussed above. Increases in these parameters on the order of 20 percent are often achieved by load testing. It is recommended that a Terracon geotechnical engineer develop guidelines for a pile load test, and monitor and evaluate any pile load tests, if performed, to assess allowable design load capacity values derived from the tests.

Design of the piling as structural members should be in accordance with applicable building codes. The ACIP piles should be designed for an allowable design load that limits the average compressive stress in the pile section to not more than 25% of the design 28-day unconfined compressive strength (f_c) of the grout used for construction of the ACIP piles.

The estimated maximum settlement of deep foundations designed and constructed in accordance with our recommendations is less than ½ inch, and probably less than ¼ inch. The estimated settlement for a pile group will be greater than that for an individual pile, and will depend on element capacity, pile group capacity, pile group orientation, and tip bearing level. For the reported column loads in the parking garage, we estimate the settlement of a pile group to be less than ½ inch.

Elevator and Vestibule Addition • Omaha, Nebraska March 20, 2015 • Terracon Project No. 05155004

4.4.3 Design Recommendations for Lateral Loads

Allowable resistance to lateral loads of the portions of grade beams that are located below a 3½-foot frost depth and bear directly against properly compacted fill or undisturbed stiff natural clay may be calculated using the earth pressures presented in subsection **4.7 Lateral Earth Pressures**. The passive resistance of the soils against the foundation above a 3½ -foot depth should be neglected due to frost action.

An equivalent fluid pressure of 300 pcf can be used as an initial estimate for calculating allowable passive earth pressures against the projected width of individual pies or lead piles in a pile group. However, it is our experience that greater pile lateral resistance can be obtained by using a computer modeling program such as L-PILE or GROUP. We can be retained to provide computer modeling of based on actual loading conditions and pile geometry, to help optimize design.

Group action for lateral resistance of shafts should be taken into account when spacing is less than 8 diameters (center to center). The computer modeling program GROUP can be used to evaluate the response of pile groups to lateral loads. Alternately, for a group of shafts oriented parallel to a lateral load, design parameters for allowable passive resistance should be reduced in accordance with the following table.

Group Reduction Factors – Laterally Loaded Piles				
Pile Spacing	Reduction Factors			
(Diameters)	Leading Row	Second Row	Third or Higher Row	
8D	1.0	1.0	1.0	
5D	0.9	0.85	0.7	
3D	0.8	0.6	0.4	

Tensile and lateral load resistance of ACIP piles should be neglected unless the piles are adequately reinforced. The installation of a long reinforcing cage can be problematic in ACIP piles. Therefore, it may be appropriate to install deeper pile caps or grade beams or utilize other means of lateral support where high lateral loads occur. Terracon can provide additional and detailed lateral and moment load analysis for individual piles and pile groups once more detailed design information is available. It is our experience that significant lateral load can be supported by ACIP piles, especially if the pile tops are fixed from rotation and adequate reinforcement is installed. Reinforcement installed within piles should include centering devices to assure the steel has adequate concrete cover.

4.4.4 ACIP Pile Installation

The successful completion of ACIP piles will depend to a large extent on the suitability of the equipment and installation procedures used. ACIP piles (12 to 18 inches in diameter) are constructed by extending continuous hollow-stemmed augers to a predetermined depth and

Elevator and Vestibule Addition • Omaha, Nebraska March 20, 2015 • Terracon Project No. 05155004

then pumping a fluid cement grout under pressure through the center of the hollow shaft as the augers are withdrawn, leaving a continuous concrete pile.

Care should be taken during the ACIP pile element installation because of the potential for "necking" and "overdrilling" during the installation procedure. Controlled withdrawal of the auger will be necessary and a sufficient head of grout should be maintained in the auger system at all times to prevent necking down of the fluid mortar due to hydrostatic pressures (e.g., minimum grout head of 10 feet or as achieved in the test pile). The quantity of the concrete grout placed in each element should be checked against the calculated volume required to obtain design pile dimensions. (e.g., minimum overpump of 120% or as achieved in the test pile). Over drilling could result in loss-of-ground and reduced capacity of adjacent piles and/or subsequent settlement of adjacent structures; therefore, only contractors that have experience with similar soil conditions should be considered for this project. Terracon should review and comment on specifications developed for pile installation, and monitor actual pile installation on a full-time basis.

Installing adjacent ACIP piles with clear distance spacing of less than 10D should be delayed until mortar in the initial pile has set. This is recommended to avoid possible grout intrusion between the piles which could jeopardize the integrity of both piles. If two piles are separated by a blocking pile (e.g., diagonal corners of a 5-pile group with an "X" configuration blocked by the center pile), the clear distance spacing can be reduced to 7D.

Should a specific element encounter refusal above design tip elevation, Terracon should be consulted to help evaluate pile capacity and condition.

4.4.5 Drilled Shaft Installation

Successful installation of the drilled shaft will depend to a large extent on the suitability of the equipment and installation procedures used. Excavation for the drilled shafts is not expected to be unusually difficult. Conventional excavating and drilling equipment should be able to penetrate the soils in the borings. Methods and equipment used for drilled shaft installation should leave the side and bottom of the shaft free of loose and disturbed material which would prevent the concrete from contacting undisturbed soil.

Development of end bearing, while limiting shaft movement to within the settlement tolerances for this project, will require close contact of the bottom of the shaft with a clean excavation bottom formed in undisturbed natural soils. This will require use of a cleanout bucket to remove any soft sediments or disturbed soil from the bottom of the drilled shaft excavation. Proper equipment and procedures for providing a clean base in drilled shafts should be utilized during construction; otherwise end bearing should be neglected. Drilled shaft foundations should be designed with a shaft diameter of at least 30 inches to facilitate cleanout.

Based on the presence of groundwater and glacial till, the drilled shaft excavations that will extend below the groundwater level or into sandy soils may require temporary casing and/or slurry drilling

Elevator and Vestibule Addition • Omaha, Nebraska March 20, 2015 • Terracon Project No. 05155004

techniques to maintain an open borehole. Permanent casing should not be utilized to a depth of more than 3.5 feet below final grade, otherwise reduction in friction and lateral resistance may occur.

After advancing of the excavation to at least the depth of casing (using slurry drilling techniques if required) and placing of concrete, the temporary casing should then be removed. The use of a surface casing would help prevent excessive scouring and subsequent enlargement of the shaft near the slurry level or ground surface. Surface casings which do not penetrate more than 3.5 feet below final grade may be left in-place, if desired, to form a smooth shaft surface.

We recommend a pre-mixed polymer slurry system be used to install the drilled shaft, if slurry drilling is selected. The slurry level should be maintained above the groundwater level at all times during drilling and through placement of concrete. Drilling procedures should avoid excessive negative pressures at the bottom of the borehole. At the completion of excavation, the shaft bottom should be cleaned with a cleanout bucket equipped to prevent backflow and loss of soil from the bucket.

Concrete should be placed in the shaft the same day as excavation. If this is not feasible, the shaft should be redrilled to a slightly larger diameter, cleaned, and the slurry tested prior to placing concrete. The concrete should be placed through a sealed tremie extending to the bottom of the excavation or as deep as possible into the concrete mass and in a manner which does not promote mixing of the concrete and slurry.

The quality of the slurry used should be tested and verified. The volume of concrete placed should be checked against the calculated volume required to obtain design shaft dimensions. Terracon should review and comment on specifications developed for shaft installation, and actual shaft installation should be monitored by a Terracon representative.

The concrete slump should be at least 6 inches, and generally in the range of 6 to 8 inches, however, a higher slump may be used to increase fluidity if appropriate for the concrete mix used. The maximum size of the concrete aggregate should not exceed one-third of the minimum clear spacing between individual reinforcing bars or bundles.

The volume of concrete placed should be checked against the calculated volume required to obtain design shaft dimensions. Terracon should review and comment on specifications developed for shaft installation, and actual shaft installation should be monitored by a Terracon representative.

If used, pile caps should extend at least 3.5 feet below lowest adjacent finished grade for frost protection. Any backfill placed adjacent to the shafts should be compacted to at least 95 percent of the material's standard Proctor maximum dry density (ASTM D 698).

Elevator and Vestibule Addition • Omaha, Nebraska March 20, 2015 • Terracon Project No. 05155004

4.5 Seismic Considerations

Based upon the results of the borings, we estimate the project site as "Site Class D" according to the 2006 International Building Code (IBC). This site class assumes the soils at the bottom of the borings continue to a depth of 100 feet. A more detailed and accurate Site Class evaluation can be achieved by performing a deeper boring or using the SeisOpt[®]ReMi[™] method to develop the full depth shear wave profile.

In our opinion, the following spectral response accelerations are applicable to this site location based on the applicable response maps are: $S_s = 0.125g$ and $S_1 = 0.042g$. The City of Omaha has adopted the 2006 IBC. Upon adoption of the 2006 IBC by the City of Omaha, amendments were installed, including the following spectral response accelerations: $S_s = 0.125g$ and $S_1 = 0.041g$.

These spectral response accelerations are based on a 2% probability of exceedance in 50 years, and were obtained from the Interpolated Probabilistic Ground Motion for the continuous 48 states by Latitude and Longitude, USGS 2002 Data Base. The S_s and S_1 values are for a Site Class B, and should be adjusted with applicable site coefficients listed in Tables 1613.5.3(1) and 1613.5.3(2) of the 2006 IBC.

4.6 Floor Slabs

4.6.1 Design Recommendations

Item	Description	
Floor slab support ¹	Aggregate base (see below) underlain by low plasticity cohesive fill prepared according to Section 4.3 Site Preparation and Earthwork.	
Modulus of subgrade reaction	100 pounds per square inch per in (psi/in) for point loading conditions	
Aggregate base course/capillary break ²	4 inches of free draining granular material	

- 1. Floor slabs should be structurally independent of any building footings or walls to reduce the possibility of floor slab cracking caused by differential movements between the slab and foundation.
- 2. The floor slab design should include a capillary break, comprised of compacted, granular material, as described in Section **4.3.2 Structural Fill Material Requirements**.

Slabs-on-grade should be isolated from structures and utilities to allow for their independent movement. Joints should be constructed at regular intervals as recommended by the American Concrete Institute (ACI) to help control the location of any cracking. Keyed and doweled joints should be considered. The owner should be made aware that differential movement between the slabs and foundations could occur.

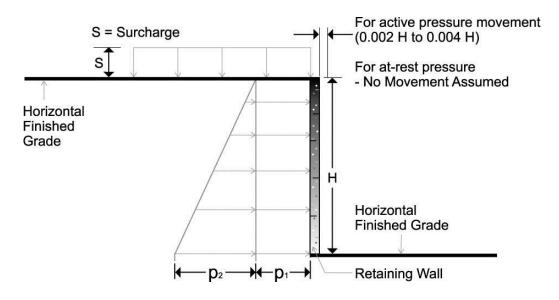
Elevator and Vestibule Addition • Omaha, Nebraska March 20, 2015 • Terracon Project No. 05155004

The use of a vapor retarder should be considered beneath concrete slabs on grade that will be covered with wood, tile, carpet or other moisture sensitive or impervious coverings, or when the slab will support equipment sensitive to moisture. When conditions warrant the use of a vapor retarder, the slab designer should refer to ACI 302 and/or ACI 360 for procedures and cautions regarding the use and placement of a vapor retarder.

4.6.2 Construction Considerations

On most project sites, the floor slab subgrades are generally developed early in the construction phase. However as construction proceeds, the subgrade may be disturbed due to foundation installation, utility excavations, construction traffic, desiccation, rainfall, etc. As a result, the floor slab subgrade may not be suitable for placement of base rock and concrete and corrective action will be required.

We recommend the floor slab subgrade be rough graded and then proofrolled with a loaded tandem axle dump truck prior to fine grading and placement of base rock. Particular attention should be paid to high traffic areas that were rutted and disturbed earlier and to areas where backfilled trenches are located. Areas where unsuitable conditions are located should be repaired by removing and replacing the affected material with properly compacted fill. All floor slab subgrade areas should be moisture conditioned and properly compacted to the recommendations in this report immediately prior to placement of the aggregate base course and concrete.


4.7 Lateral Earth Pressures

4.7.1 Design

The lateral earth pressure recommendations given in this section are applicable to the design of rigid retaining walls subject to slight rotation, such as cantilever, or gravity type concrete walls. These recommendations are not applicable to the design of modular block - geogrid reinforced backfill walls (also termed MSE walls). Recommendations covering these types of wall systems are beyond the scope of services for this assignment. However, we would be pleased to develop a proposal for evaluation and design of such wall systems upon request.

Reinforced concrete walls with unbalanced backfill levels on opposite sides should be designed for earth pressures at least equal to those indicated in the following table. Earth pressures will be influenced by structural design of the walls, conditions of wall restraint, methods of construction and/or compaction and the strength of the materials being restrained. Two wall restraint conditions are shown. Active earth pressure is commonly used for design of free-standing cantilever retaining walls and assumes wall movement. The "at-rest" condition assumes no wall movement. The recommended design lateral earth pressures do not include a factor of safety and do not provide for hydrostatic pressure on the walls.

Earth Pressure Coefficients

Earth Pressure Conditions	Coefficient For Backfill Type	Equivalent Fluid Density (pcf)	Surcharge Pressure, P ₁ (Psf)	Earth Pressure, P ₂ (Psf)
Active (Ka)	Granular - 0.33	40	(0.33)S	(40)H
	Lean Clay - 0.36	43	(0.36)S	(43)H
At-Rest (Ko)	Granular - 0.46	55	(0.46)S	(55)H
	Lean Clay - 0.50	60	(0.50)S	(60)H
Passive (Kp)	Granular - 3.0	360		
	Lean Clay - 2.4	288		

Applicable conditions to the above include:

- For active earth pressure, wall must rotate about base, with top lateral movements of about 0.002 H to 0.004 H, where H is wall height
- For passive earth pressure to develop, wall must move horizontally to mobilize resistance.
- Uniform surcharge, where S is surcharge pressure
- In-situ soil backfill weight a maximum of 120 pcf
- Horizontal backfill, compacted between 95 and 98 percent of standard Proctor maximum dry density
- No hydrostatic pressure acting on wall
- No loading from compaction equipment
- No loading from nearby footings or slabs

Elevator and Vestibule Addition • Omaha, Nebraska March 20, 2015 • Terracon Project No. 05155004

- No dynamic loading
- No safety factor included in soil parameters
- Ignore passive pressure in frost zone

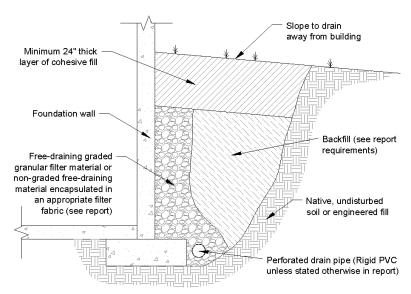
Backfill placed against structures should consist of granular soils or low plasticity cohesive soils. For the granular values to be valid, the granular backfill must extend out from the base of the wall at an angle of at least 45 and 60 degrees from vertical for the active and passive cases, respectively.

If the site grading results in areas where the building floor slab elevation is more than 2 feet below the outside grade, we recommend a perimeter drain be installed at the foundation level to control the water level behind the wall. If this is not possible, then combined hydrostatic and lateral earth pressures should be calculated using the values shown in the following table. Structures designed to resist hydrostatic loading and to resist buoyant uplift should be watertight, with waterstops placed at all joints to reduce the potential for seepage through the wall joints.

Backfill Type	Active Condition 1,2	At-Rest Condition 1,2
Clay Backfill	85 pcf	96 pcf
Granular Backfill	83 pcf	91 pcf

- 1. These pressures do not include the influence of surcharge, equipment, or floor loading, which should be added.
- 1. Calculated using a saturated soil unit weight of 125 pcf.

These pressures do not include the influence of surcharge, equipment or floor loading, which should be added. Footings and other loads located adjacent to walls may have a significant effect on lateral pressures. Placement of footings in wall backfill should be avoided unless structural analyses are performed to evaluate the resulting loads and effects on the wall. To avoid excessive lateral wall loads, heavy compaction equipment should not be operated within a distance out from new or existing walls equal to the height above the base of the wall.


4.7.2 Drainage Systems

For structures that are not designed to be watertight, a perforated rigid plastic or metal drain line should be installed behind the base of walls extending below adjacent grade to prevent hydrostatic loading on the walls and seepage into the below-grade level. The invert of a drain line around below-grade areas should be at least 12 inches below the top of subgrade elevation for the interior floor. The drain line should be sloped to provide positive gravity drainage to a sump or other suitable outlet. The drain line should be surrounded by free-draining granular material graded to prevent the intrusion of soil fines into the granular material or the intrusion of the granular material into the drain pipe perforations. Alternatively, a coarse, clean, free-draining granular material could be used to surround the pipe if this material is encapsulated with suitable filter fabric.

Elevator and Vestibule Addition • Omaha, Nebraska March 20, 2015 • Terracon Project No. 05155004

At least a 2-foot wide section of free-draining granular fill is recommended for backfill above the drain line and adjacent to the wall and should extend to within 2 feet of final grade. The granular backfill should be capped with compacted cohesive fill to help prevent infiltration of surface water into the drain system.

4.8 Exterior Slabs

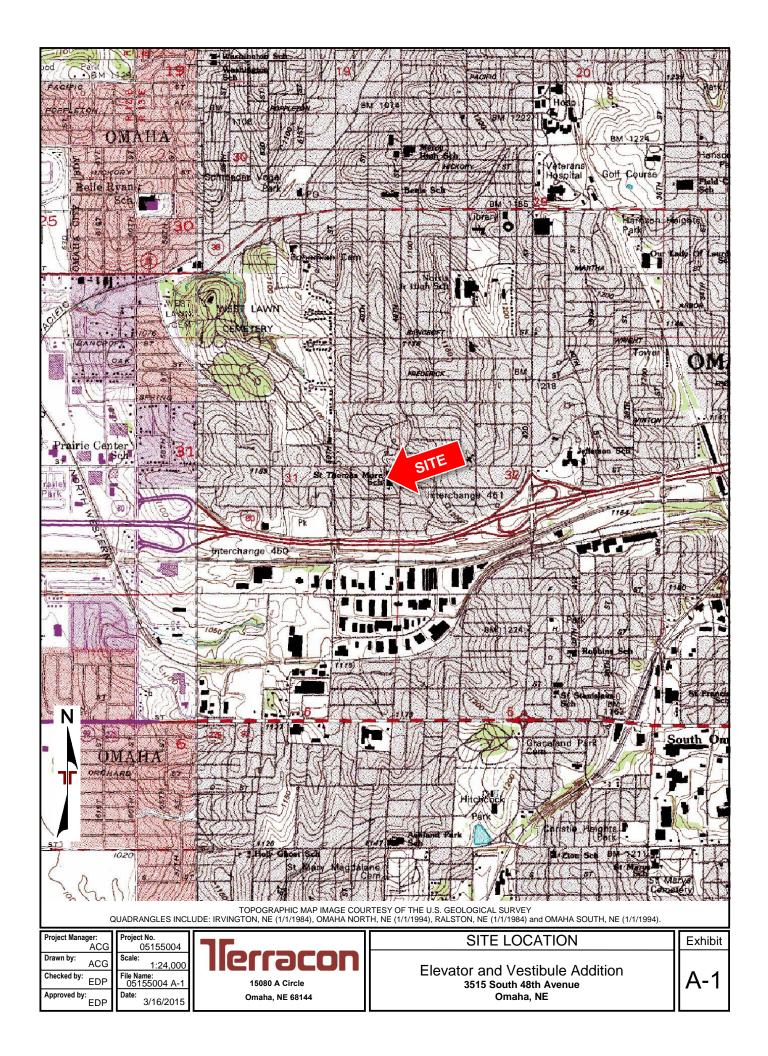
The clayey soils on this site are frost susceptible, and small amounts of groundwater can be detrimental to the performance of the slabs. Grade-supported exterior slabs are expected to heave. The amount of heave may be reduced by providing surface drainage away from the building and slabs and toward the site storm drainage system. Structural stoops are recommended adjacent to exterior doors and other movement-sensitive exterior slabs. Consideration should be made to installing drain-tile around the perimeter of exterior slabs that connect directly to the storm drainage system to help further reduce the potential for frost heave.

Consideration should also be given to extending structural stoops or a zone of non-frost susceptible fill to include the front sidewalks, ADA parking stalls, and pathways connecting the ADA stalls with the entrances. It is our opinion that placing non-frost susceptible material in large areas under exterior pavements and sidewalks would be exceedingly expensive and an unusual design and construction procedure in the Omaha area. We should be contacted to provide additional recommendations should consideration be given to placing non-frost-susceptible (granular) material in large areas.

5.0 GENERAL COMMENTS

Terracon should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Terracon also should be retained to provide observation and testing services during grading, excavation, foundation construction and other earth-related construction phases of the project.

Elevator and Vestibule Addition Omaha, Nebraska March 20, 2015 Terracon Project No. 05155004


The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

The scope of services for this project does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

APPENDIX A FIELD EXPLORATION

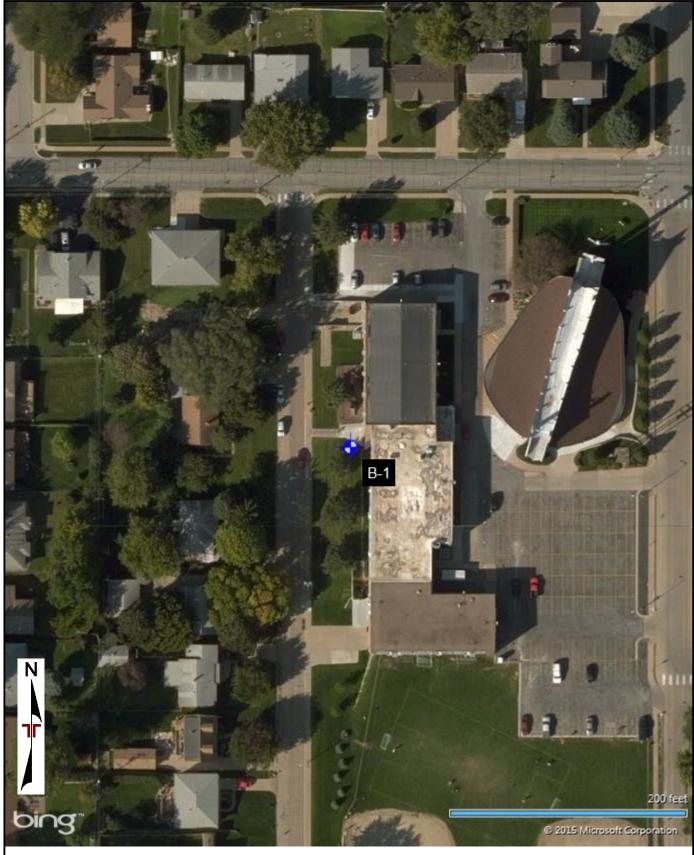


DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

AERIAL PHOTOGRAPHY PROVIDED BY MICROSOFT BING MAPS

Project Manager:
ACG
Drawn by:
ACG

Checked by: EDP
Approved by: EDP

Project No. 05155004 Scale: AS SHOWN File Name: 05155004 A-2 Date: 3/16/2015

1 Terracon
15080 A Circle

Omaha, NE 68144

EXPLORATION PLAN

Elevator and Vestibule Addition 3515 South 48th Avenue Omaha, NE Exhibit

A-2

Elevator and Vestibule Addition Omaha, Nebraska March 20, 2015 Terracon Project No. 05155004

Field Exploration Description

The drill crew staked the boring and cone sounding locations relative to existing physical features at the site. GPS coordinates were obtained at each of the boring locations using a hand-held GPS unit with a lateral accuracy of about 20 feet or less. The approximate boring location is shown on the Exploration Location Plan included in Appendix A. Elevations were obtained from the Douglas County GIS website and rounded to the nearest foot. The location and elevation of the boring should be considered accurate only to the degree implied by the means and methods used to define them.

Soil Test Borings

The borings were drilled with an ATV-mounted rotary-drilling rig. The boring was drilled using continuous-flight, hollow-stem augers to advance the boreholes. Representative samples were obtained using thin-walled tube and split-barrel sampling procedures. In the thin-walled tube sampling procedure, a thin-walled, 3-inch OD, seamless steel tube with a sharp cutting edge is pushed hydraulically into the ground to obtain relatively undisturbed samples of cohesive or moderately cohesive soils. In the split-barrel sampling procedure, a standard 2-inch O.D. split-barrel sampling spoon is driven into the ground with an automated 140-pound hammer falling a distance of 30 inches. The number of blows required to advance the sampling spoon the last 12 inches of a normal 18-inch penetration is recorded as the standard penetration resistance value. These values are indicated on the boring logs at the depths of occurrence. The samples were sealed and transported to the laboratory for testing and classification.

Field logs of the borings were prepared by the drill crew. The logs included visual classifications of the materials encountered during drilling as well as the driller's interpretation of the subsurface conditions between samples. The boring logs included with this report represent an interpretation of the field logs and include modifications based on the laboratory test results and further examination of the samples by the project geotechnical engineer.

		BORING L	1							1 of	2
	OJECT: Elevator and Vestibule Additi	on	CLIENT: S	St. Thor Omaha,	nas NE	Mod	re Catholic	Chur	ch		
SITI	E: 3515 Souith 48th Ave Omaha, NE										
의	LOCATION See Exhibit A-2 Latitude: 41.2264° Longitude: -95.9865°			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	LABORATORY TORVANE/HP (psf)	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT
- 1	DEPTH			DEPT	WATER OBSER\	SAMPL	FIELD RESU	LABOR	COMPR STRENG	CONTE	DRY
	Grass at Surface FILL - LEAN CLAY, brown to dark brown mott	led		-			2-3-3			22	
				-	_		N=6				
	F.F. compared to the F.f.			5-				4000 (HP)	1050	28 25	8 10
	gray, petroleum odor at 4.5 ft LEAN CLAY (CL), trace calcareous nodules, but	rown, very stiff to stiff	:	-				6500 (HP)	4470	23	9
				-							
				10-				6500 (HP)		26	9
				-							
				-							
				15-				2500 (HP)		30	8
				-							
1	9.0 LEAN CLAY (CL), reddish-brown, medium stiff	to stiff		_				3500			
				20-				(HP)	1740	24	9
				-	\blacksquare						
				25-				3500 (HP)		27	9
	Stratification lines are approximate. In-situ, the transition may be	e gradual.			lamme	r Type:	Automatic				L
Advance	ement Method:	I		. I N	otes:						
Hollov	w Stem Auger	See Exhibit A-3 for descri See Appendix B for descri procedures and additional	ription of laboratory al data (if any).	durco.	oles.						
	nment Method: g backfilled with soil cuttings upon completion.	See Appendix C for expla abbreviations.	iliauon oi symbols (ai iU							
$\overline{\nabla}$	WATER LEVEL OBSERVATIONS 29 ft, While Drilling	75000	aco	Bor			25/2015	Boring Co	mpleted:	2/25/20	15
∇	23 ft, After Borehole		A Circle	Dril	Rig: #	897		Driller: J. (Green		
			Nebraska	Pro	ject No	.: 0515	5004	Exhibit:	A-4		

			BORING L	1							2 of	2
PR	OJECT	: Elevator and Vestibule Ad	ldition	CLIENT:	St. The Omaha			ore Catholic	c Chur	ch		
SIT	E:	3515 Souith 48th Ave Omaha, NE										
90-	LOCATIO	N See Exhibit A-2			t.)	Æ	TYPE	T. S	JRY (psf)	ED SIVE (psf)	(%)	_ ·
GRAPHIC LOG	Latitude: 41	l.2264° Longitude: -95.9865°			DEPTH (Ft.)	WATER LEVEL	₹\ATI	FIELD TEST RESULTS	LABORATORY TORVANE/HP (psf)	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT
GRA						WATE	OBSERVA SAMPLE	FIEL	LABO	COMP	CON	DR
	DEPTH LEA	N CLAY (CL), reddish-brown, medium	n stiff to stiff (continued)			-	0 0		<u> </u>	000		
		·	,			+						
						+						
						$ \sqrt{-}$	<u> </u>					
					30)—			3500 (HP)	2860	26	9
						+						
						+						
						-						
						+						
					35	5-			4000 (HP)	2430	27	9
						-						
						+						
						+						
	39.0 LEA	N TO FAT CLAY (CL/CH), trace sand	I and gravel, gray, very stil	f, (Glacial Till))	+						
					40)_			6000 (HP)	8200	23	10
						-						
						-						
						-						
						-		5-6-8				
					45	5—	X	N=14			18	
						+						
						-						
						-						
						+		5-7-9				
	50.5				50		X	N=16			19	
	Bori	ing Terminated at 50.5 Feet				-						
						-						
	Stratificati	on lines are approximate. In-situ, the transition r	may be gradual.			Hamr	ner Typ	e: Automatic				
	cement Meth		See Exhibit A-3 for descr	iption of field proc	cedures.	Notes:						
	otom nuţ	J	See Appendix B for desc procedures and additiona	ription of laborator	ry							
	onment Meth		See Appendix C for expla abbreviations.		s and							
BON		with soil cuttings upon completion.	appreviations.									
7		ER LEVEL OBSERVATIONS	75		E	oring S	tarted:	2/25/2015	Boring Co	mpleted:	2/25/20 ⁻	15
<u> </u>		hile Drilling ter Borehole				rill Rig	#897		Driller: J.	Green		
	· · · · · · · · · · · · · · · · · · ·			A Circle Nebraska	F	roject l	No.: 051	55004	Exhibit:	A-4		

APPENDIX B LABORATORY TESTING

Elevator and Vestibule Addition • Omaha, Nebraska March 20, 2015 • Terracon Project No. 05155004

Laboratory Testing Description

Water content tests (ASTM D2216) were performed on the samples. Density determinations (ASTM D7263) were performed on most of the thin-walled tube samples, and unconfined compression tests (ASTM D2166) were performed on some of the thin-walled tube samples. The unconfined compressive strength of most of the samples was estimated with a hand penetrometer test. Results of these laboratory tests are provided on the boring logs.

The samples were classified in the laboratory based on visual observation, texture and plasticity. Additional laboratory testing could be performed to more accurately classify the samples. The soil descriptions presented on the boring logs for native soils are in accordance with our enclosed General Notes and Unified Soil Classification System (USCS, ASTM D2487 and ASTM D2488). The estimated group symbol for the USCS is also shown on the boring logs for native soils, and a brief description of the Unified System is included in this report.

Procedural standards noted above are for reference to methodology in general. In some cases, variations to methods are applied as a result of local practice or professional judgment.

APPENDIX C SUPPORTING DOCUMENTS

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

		\square		Water Initially Encountered		(HP)	Hand Penetrometer
	Auger	Split Spoon		Water Level After a Specified Period of Time		(T)	Torvane
NG.	Ohalles Talka	Marin 2011	LEVEL	Water Level After a Specified Period of Time	ESTS	(b/f)	Standard Penetration Test (blows per foot)
IPLIN	Shelby Tube	Macro Core	∞	Water levels indicated on the soil boring logs are the levels measured in the	D TE	(PID)	Photo-Ionization Detector
SAMP	Ring Sampler	Rock Core	WATE	borehole at the times indicated. Groundwater level variations will occur over time. In low permeability soils, accurate determination of groundwater levels is not possible with short term	FIEL	(OVA)	Organic Vapor Analyzer
	Grab Sample	No Recovery		water level observations.			

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	RELATIVE DENSITY OF COARSE-GRAINED SOILS (More than 50% retained on No. 200 sieve.) Density determined by Standard Penetration Resistance Includes gravels, sands and silts.			CONSISTENCY OF FINE-GRAINED SOILS (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance				
TERMS	Descriptive Term (Density) Standard Penetration or Ring Sampler N-Value Blows/Ft.			Descriptive Term (Consistency)	Unconfined Compressive Strength, Qu, psf	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.	
뿔	Very Loose	0 - 3	0 - 6	Very Soft	less than 500	0 - 1	< 3	
	Loose	4 - 9	7 - 18	Soft	500 to 1,000	2 - 4	3 - 4	
STRENGT	Medium Dense	10 - 29	19 - 58	Medium-Stiff	1,000 to 2,000	4 - 8	5 - 9	
ြင	Dense	30 - 50	59 - 98	Stiff	2,000 to 4,000	8 - 15	10 - 18	
	Very Dense	> 50	<u>≥</u> 99	Very Stiff 4,000 to 8,000 15 - 30				
				Hard	> 8,000	> 30	> 42	

RELATIVE PROPORTIONS OF SAND AND GRAVEL

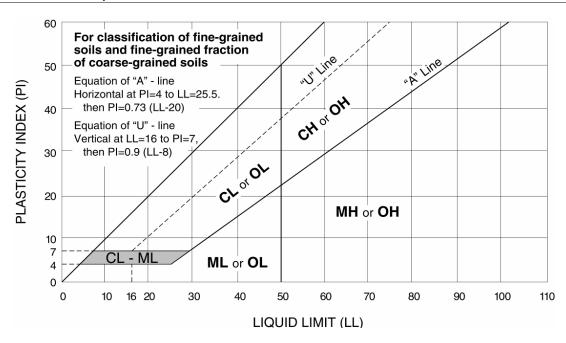
<u>Descriptive Term(s)</u> of other constituents	Percent of Dry Weight	<u>Major Component</u> <u>of Sample</u>	Particle Size
Trace	< 15	Boulders	Over 12 in. (300 mm)
With	15 - 29	Cobbles	12 in. to 3 in. (300mm to 75mm)
Modifier	> 30	Gravel	3 in. to #4 sieve (75mm to 4.75 mm)
		Sand	#4 to #200 sieve (4.75mm to 0.075mm
		Silt or Clay	Passing #200 sieve (0.075mm)

GRAIN SIZE TERMINOLOGY

PLASTICITY DESCRIPTION

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s)	Percent of	<u>Term</u>	Plasticity Index
of other constituents	<u>Dry Weight</u>	Non-plastic	0
Trace	< 5	Low	1 - 10
With	5 - 12	Medium	11 - 30
Modifier	> 12	High	> 30


UNIFIED SOIL CLASSIFICATION SYSTEM

		Soil Classification			
Criteria for Assigr	Group Symbol	Group Name ^B			
	Gravels:	Clean Gravels:	Cu ≥ 4 and 1 ≤ Cc ≤ 3 ^E	GW	Well-graded gravel F
	More than 50% of	Less than 5% fines ^C	Cu < 4 and/or 1 > Cc > 3 ^E	GP	Poorly graded gravel F
	coarse fraction retained	Gravels with Fines:	Fines classify as ML or MH	GM	Silty gravel F,G,H
Coarse Grained Soils: More than 50% retained	on No. 4 sieve	More than 12% fines ^C	Fines classify as CL or CH	GC	Clayey gravel F,G,H
on No. 200 sieve	Sands:	Clean Sands:	Cu ≥ 6 and 1 ≤ Cc ≤ 3 ^E	SW	Well-graded sand I
511 140. 250 Sieve	50% or more of coarse	Less than 5% fines D	Cu < 6 and/or 1 > Cc > 3 ^E	SP	Poorly graded sand I
	fraction passes No. 4	Sands with Fines:	Fines classify as ML or MH	SM	Silty sand G,H,I
	sieve	More than 12% fines D	Fines classify as CL or CH	SC	Clayey sand G,H,I
		Inorganic:	PI > 7 and plots on or above "A" line J	CL	Lean clay K,L,M
	Silts and Clays:	inorganic.	PI < 4 or plots below "A" line J	ML	Silt K,L,M
	Liquid limit less than 50	Organic:	Liquid limit - oven dried	OL	Organic clay K,L,M,N
Fine-Grained Soils: 50% or more passes the		Organic.	Liquid limit - not dried	OL	Organic silt K,L,M,O
No. 200 sieve		Inorganic:	PI plots on or above "A" line	CH	Fat clay K,L,M
	Silts and Clays:	inorganic.	PI plots below "A" line	MH	Elastic Silt K,L,M
	Liquid limit 50 or more	Organic:	Liquid limit - oven dried < 0.75	ОН	Organic clay K,L,M,P
		Organic.	Liquid limit - not dried	ОП	Organic silt K,L,M,Q
Highly organic soils:	Primarily	organic matter, dark in o	color, and organic odor	PT	Peat

^A Based on the material passing the 3-inch (75-mm) sieve

^E Cu =
$$D_{60}/D_{10}$$
 Cc = $\frac{(D_{30})^2}{D_{10} \times D_{60}}$

Q PI plots below "A" line.

^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.

Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
 Sands with 5 to 12% fines require dual symbols: SW-SM well-graded

D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

 $^{^{\}text{F}}$ If soil contains \geq 15% sand, add "with sand" to group name.

^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

^H If fines are organic, add "with organic fines" to group name.

¹ If soil contains ≥ 15% gravel, add "with gravel" to group name.

J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.

^K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.

 $^{^{\}text{L}}$ If soil contains \geq 30% plus No. 200 predominantly sand, add "sandy" to group name.

^M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.

^N PI ≥ 4 and plots on or above "A" line.

 $^{^{\}text{O}}$ PI < 4 or plots below "A" line.

P PI plots on or above "A" line.

Elevator and Vestibule Addition • Omaha, Nebraska March 20, 2015 • Terracon Project No. 05155004

References:

Soil Survey of Douglas County, Nebraska; United States Department of Agriculture; URL: http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx

Soil Survey of Douglas and Sarpy Counties, Nebraska, United States Department of Agriculture, Soils Conservation Service, 1975.

United States Geological Survey, 7.5-minute series map "Omaha North, Nebraska," 1994.

United States Geological Survey, 7.5-minute series map "Omaha South, Nebraska," 1994.

Miller, Robert D., **Geology of the Omaha-Council Bluffs Area, Nebraska-lowa**; Geological Survey Professional Paper 472; published by Washington, U.S. Government Printing Office, 1964.

PART 1 - GENERAL

1.1	PROJECT
A.	Proposal of hereinafter called "bidder"), a corporation organized and existing under the laws of the state of, a partnership, or an individual as
	To: St. Thomas More School 3515 South 48 th Ave. Omaha, NE 68106
В.	The Bidder, having become familiar with the local conditions affecting the cost of the Work at the place where the Work is to be done, and with the related Drawings and Project Manual and other Bidding Documents, hereby proposes and agrees to furnish all labor, materials, necessary tools, expendable equipment, and all utility and transportation services necessary to perform and complete all Work required for the erection of the St. Thomas More Elevator Addition, including mechanical and electrical Work, all in accordance with the Contract Documents, within the time set forth hereinafter and at the prices stated below.
C.	Bidder agrees to commence Work under this Contract within seven (7) days of a date to be specified in a written "Notice to Proceed" from the Owner and to fully complete the Work within calendar days. (Refer to Section 00 7300, SUPPLEMENTARY CONDITIONS, for intermediate completion dates required for the Project.
1.2	LUMP SUM BASE PROPOSAL
A.	All of the Work as above described for the sum of
1.3	ALTERNATE PROPOSALS
A.	The above Lump Sum Base Proposal may be modified in accordance with the following alternate proposals, as may be accepted by the Owner. See Section 01 2300, ALTERNATES. 1. Alternate No. 1: New Reception Area. If this Alternate is accepted, add to lump sum Base Proposal the sum of dollars (\$).
В.	The Owner reserves the right to accept above Alternates for a period of ninety (90) calendar days after award of Contract.
1.4	SUBSTITUTIONS
A.	In submitting this proposal, it is understood that the Base proposal is based on those materials specified by manufacturer or trade name. The Bidder may list substitution items in the spaces

allowed hereinafter, of other manufacturers having similar design to those specified, and shall indicate the amount to add to or deduct from the Base Proposal.

- B. The Bidder's attention is particularly called to Section 01 2500, SUBSTITUTION PROCEDURES.
- C. It is further understood that the proposals for these substitutions will not affect the award of the Contract and that only the Base Proposal (and the Alternates) will be considered in the award of the Contract.
- D. It is further understood that the Contractor will assume any and all costs incidental to the substitution for any phase of construction, time of construction, and design revision costs.

	0 1	т.
H	Substitution	Itame
7.	Substitution	1101113

F.	Item or Material Manufacturer and Model No.		
	1	Add	\$
		Deduct	\$
	2.	Add	\$
		Deduct	\$
	3.	Add	\$
		Deduct	\$
	4.	Add	\$
		Deduct	\$
	5	Add	\$
		Deduct	\$
	6.	Add	\$
		Deduct	\$
	7	Add	\$
		Deduct	\$
	8.	Add	\$
		Deduct	\$

1.5 RIGHT OF OWNER

- A. Bidder understands that the Owner reserves the right to reject any or all bids and to waive any irregularity in the bidding.
- B. The Bidder agrees that this proposal may not be withdrawn for a period of thirty (30) calendar days from the receipt thereof.

1.6 ADDENDA RECEIPT

A.	The receipt of Addenda No	_ through	to the D	rawings and Specifications is
	hereby acknowledged. Dated this	·	day of	, 20
				Name of Bidder
				Address of Bidder
				Authorized Officer

END OF SECTION 004200

SECTION 006000 - PROJECT FORMS

PART 1 - GENERAL

1.1 PROJECT FORMS

- A. Project forms are referenced from Section 00 7300, SUPPLEMENTARY CONDITIONS, Section 01 2500, SUBSTITUTION PROCEDURES, Section 01 3300, SUBMITTAL PROCEDURES. The forms, or a reasonable facsimile thereof, shall be used for this project and are as follows:
 - 1. Shop Drawing, Product Data or Sample Transmittal form
 - 2. Request for Interpretation form
 - 3. Substitution Application form

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

END OF SECTION 006000

SHOP DRAWING, PRODUCT DATA OR SAMPLE TRANSMITTAL NO. PROJECT NAME St. Thomas More Elevator Addn. DALY PROJECT NO. 002 -101560-000 PLANNING•ARCHITECTURE•ENGINEERING•INTERIORS Address CONTRACTOR ____ City, State, Zip CONTRACTOR JOB NO. 1ST Submittal (Indicate by X) Resubmittal (Indicate by X) IF RESUBMITTAL, PREVIOUS TRANSMITTAL NO. OF ITEM BEING RESUBMITTED: Action Specification Drawing Sample Taken by Section & or Description of Product or Equipment Manufacturer (Mark X) A/E Paragraph No. Data No. a. The above submittal has been reviewed and approved by the Contractor in accordance with provisions of the General Conditions for this project, and <u>there are no deviations</u> from the requirements of the Contract Documents. (Indicate by X); or, b. The above submittal has been reviewed and approved by the Contractor in accordance with the provisions of the General Conditions for this project with any specific deviations from the requirements of the Contract Documents clearly identified. _____ (Indicate by X - note: if this is actually a <u>Substitution</u>, a separate <u>Substitution Application</u> Form must be attached, clearly documenting how the Owner would benefit from such a contract change; the submittal will not be returned until Substitution Application has been acted upon) Contractor's Signature Contractor Street Address or P.O. Box No. City, State SPACE BELOW FOR ARCHITECT USE ONLY The above submittal has been reviewed by the Architect in accordance with the General Conditions for this project and is returned with action as indicated in the legend below. Shop drawings and other submittals are part of the Contractor's own Work Plan and are **not** Contract Documents. Architect's review of Contractor's submittals is only for the limited purpose of checking for conformance with the design concept expressed in the Contract Documents. Architect's review of such submittals is not conducted for the purpose of determining the accuracy and completeness of other details such as dimensions and quantities, or for substantiating instructions for installation or performance of equipment or systems, all of which remain the sole responsibility of the Contractor. Architect's review of Contractor's submittals cannot change the Contract Documents and cannot relieve the Contractor of any obligations under the Contract. The Architect's review shall **not** constitute approval of Contractor's safety precautions or of any construction means, methods. techniques, sequences or procedures. A - No Exceptions B - Exceptions C - Revise and D - Rejected E - Not Required -Noted Noted (do not Resubmit Returned without resubmit) (See Notes) Action Other reviewers' initials: Arch LECO A DALY

LAD 00840-1 7-8-09

By (reviewer initials):

Date:

Struct Mech Elect

Other

___ Civil____

REQUEST FOR INTERPRETATION

NO.		
	,	

LEO A DALY

PLANNING ARCHITECTURE ENGINEERING INTERIORS
Address
City, State

DATE	
PROJECT NAME St.	Thomas More Elevator Addn.
DALY PROJECT NO.	002-10156-000
CONTRACTOR	
<u></u>	

City, State		CONTRACTOR	
SUBJECT:			
REFERENCES: SF	PECIFICATIONS:	DRAWINGS:	
REQUEST: The about	ove subject as more specifically ad requires a clarified interpretat	addressed below appears in the referenced documents as part or ion for our complete understanding of the intent of the documents	of the
SUGGESTED RESC	DLUTION:		
(Contractor's Signature)			

RESPONSE: NOTE: an RFI response cannot change the requirements of the Contract Documents.

If a contract change is required, either

ASI-R or CCD-R must be issued to confirm or clarify the above response.

By: (responder's initials) _____ Date: ____

SUBSTITUTION APPLICATION / Value Engineering Proposal

NO
nas More Elevator Addn. 10156-000
and/or detail nos.) is:
rform adequately the se and be capable of
and make such other
h, or is not
the Drawings and/or
e fee or royalty.
estimate below) and benefit/savings to the ims for additional costs
ox No. City, State
ete with copies of the with: akdown
nated below:
D - Rejected

	A	DA	LY
--	---	----	----

LECUA DALY	DATE
PLANNING • ARCHITECTURE • ENGINEERING • INTERIORS	PROJECT NAME St Thomas More Elevator Addn.
Address City, State, Zip	DALY PROJECT NO. <u>002-10156-000</u>
	CONTRACTOR
	CONTRACTOR JOB NO
The reason Contractor proposes the following Substit	tution/VE change (ref. to spec. and/or detail nos.) is:
The Contractor certifies that this Substitution / Value functions called for by the Contract Documents and	
performing the same function as that specified. If this substitution is accepted, Contractor will coordina changes as may be required to make the Work complete it.	
Warranties and/or bonds for the proposed substitutio applicable.	n is attached herewith, or is not
Acceptance of this substitution will Specifications to adapt the design to the substitution.	_ will not require change in the Drawings and/or
Acceptance of this substitution will will	not require payment of any license fee or royalty.
Acceptance of this substitution, <u>subject to the costs</u> any claims from other contractors affected by the re Owner of \$ NOTE: The which may subsequently become apparent.	esulting change, will realize a benefit/savings to the
Contractor's Signature Contractor	Street Address or P.O. Box No. City, State
A detailed, side-by-side comparison of this substitue proposed manufacturer's maintenance, repair and replace Required Attachments: 1) Full descriptive and technic	ement services are attached herewith:
SPACE BELOW FO	OR A/E USE ONLY
The above application has been reviewed by Architect and	d is returned with action as designated below:
A – Will recommend to the Owner for a Change Order B – Will recommend to Owner <u>as Noted</u> for a Change Order	C - Amend and Resubmit D - Rejected
Architect's estimate for evaluation/redesign cost of th	ne proposed Substitution/VE change: \$
IM	A DAIU

By (reviewer initials): Date: _

SECTION 007300 - GENERAL AND SUPPLEMENTARY CONDITIONS

PART 1 - GENERAL

1.1 GENERAL CONDITIONS

- A. Add the following to subparagraph 1.1.1 of the GENERAL CONDITIONS:
 - "1.1.1.1 The form of agreement to be used for this project is the American Institute of Architects Document A101, 2007 Edition, "Standard Form of Agreement Between Owner and Contractor."
- B. The American Institute of Architects Document A201, 2007 Edition, 'General Conditions of the Contract for Construction', and Additions and Modifications included hereinafter constitute the General Conditions of the Contract. The AIA Document A201 is on file for reference at the office of the Architect. It will be made a part of the Contract and attached thereto.
- C. The following supplements modify, change, delete from or add to the GENERAL CONDITIONS OF THE CONTRACT FOR CONSTRUCTION. Where any article, paragraph, subparagraph or clause thereof is modified or deleted by these supplements, the unaltered provisions of that article, paragraph, subparagraph or clause shall remain in effect.

1.2 BASIC DEFINITIONS

- A. Add the following to subparagraph 1.1.6 of the GENERAL CONDITIONS:
 - "1.1.6.1 Specifications shall also refer to the written volume published by the Architect containing General and Supplementary Conditions, Contract Provisions, and Technical Specifications assembled for the Work, also referred to as the Project Manual."
- B. Add the following to paragraph 1.1 of the GENERAL CONDITIONS:
 - "1.1.9 Miscellaneous Definitions and Abbreviations.

1.	"Architect"	LEO A DALY
		Planning, Architecture, Engineering, Interiors
		8600 Indian Hills Drive
		Omaha, Nebraska 68114-4039
2.	"Provide"	Contractor to furnish and install.
3.	"Selected"	Selected by the Architect.
4.	"ASTM Specifications"	Standard Specifications of the American Society
		for Testing and Materials
		1916 Race Street
		Philadelphia, Pennsylvania 19103

5. "ASME" Applicable Code, Test or Requirement of the American Society of Mechanical Engineers 29 West 39 Street New York, New York 10018 Batterymarch Park P.O. Box 9101 Quincy, Massachusetts 02269-9904 333 Pfingsten Road Northbrook, Illinois 60062-2096 8. "Notice to Proceed"...... A written notice given by the Owner to the Contractor (with a copy to Architect) fixing the date on which the Contract Time will commence to run and on which Contractor shall start to perform obligations under the Contract Documents.

1.1.10 Referenced Laws and Specifications.

- 1. All laws, ordinances, rules, regulations and orders of any public authority, all standard specifications, manuals and codes, and all manufacturer's specifications, directions, recommendations and publications referred to for the performance of the Work or for the establishment of construction, materials or equipment standards, whether or not specifically made a part of or incorporated by reference in the Contract Documents, shall be the latest revisions or editions thereof in effect on the date of the Contract Specifications or as to Change Orders, on the date of the Change Order.
- 2. All references to the "Manufacturer's Specifications," "Manufacturer's Directions" or "Manufacturer's Recommendations" shall refer to the referenced manufacturer's published specifications or manuals. These publications hereby are made a part of and incorporated by this reference into the Contract Specifications as though repeated therein in full, and all manufactured articles, materials and equipment shall be applied, installed, connected, erected, used, cleaned and conditioned accordingly, unless specified to the contrary.
- 3. No provision or term of any referenced standard specification, manual, or code, or manufacturer's specification, direction, recommendation, or publication, whether or not specifically made a part of, or incorporated by reference in the Contract Documents, shall be effective to change the duties and responsibilities of the Owner or Architect, or any of their consultants, agents, or employees from those set forth in the Contract Documents or Owner-Architect Agreement, nor shall such provision or term be effective to assign to Architect or any of Architect's consultants, agents, or employees, any duty, responsibility, or authority to supervise, direct, or control the furnishing or performance of the Work or any duty, responsibility, or authority to undertake any duty or responsibility contrary to the provisions of the Contract Documents or Owner-Architect Agreement.

1.1.11 Interpretation of Conflicts. Should conflicts occur in the Contract Documents, the Contractor shall request interpretation before proceeding with the applicable Work. All such requests shall first be preceded by a diligent investigation into the Contract Documents. Evidence of such investigation shall be contained in all requests for interpretation submitted.

If the Contractor fails to make such a request, no excuse will thereafter be entertained for failure to carry out the Work in a satisfactory manner. Should conflicts occur in or between Drawings and Specifications, the Contractor is deemed to have estimated on the more expensive way of doing the Work unless having asked for, and obtained, written decision before submission of proposal as to which method or materials will be required.

- 1.1.12 Equipment Furnished By Others. For all equipment furnished by others, to be installed by the Contractor, the Contractor shall use manufacturer's detail drawings to establish roughing-in dimensions and location of services. In case of conflict the equipment detail drawings and dimensions shall be used, except where aesthetic or structural considerations make an adjustment necessary.
- 1.1.13 Requests for Interpretation. The Contractor may request interpretations of the documents from the Architect. All such requests for interpretation shall first be preceded by a diligent investigation into the Contract Documents. Evidence of such investigation shall be contained in all requests for interpretation that may arise. All such requests shall be submitted on the "Request for Interpretation" form included in Section 00 6000, PROJECT FORMS, and shall include a description of any interpretation which the Contractor has formulated from the content of the Contract Documents." The Contractor's schedule shall allow time for these requests to be submitted so as to cause no delay in the Work. Contractor shall reimburse Owner for the charges of the Architect for response to Contractor's requests for interpretation when such information is available to the Contractor from a careful study and comparison of the Contract Documents, or prior Project correspondence or documentation."

1.3 REVIEW OF CONTRACT DOCUMENTS BY CONTRACTOR

A. With reference to subparagraphs 4.2.14 of the GENERAL CONDITIONS, modify the term "request for information" to "request for interpretation" therein.

1.4 CORRELATION AND INTENT OF THE CONTRACT DOCUMENTS

- A. Add the following to subparagraph 1.2.1 of the GENERAL CONDITIONS;
 - "1.2.1.1 Wherever an article, device or piece of equipment is referred to in the singular number, such references shall apply to as many such articles as are shown on the Contract Documents or required to complete the installation."

- B. Add the following to paragraph 1.2 of the GENERAL CONDITIONS:
 - "1.2.4 The Contract Documents are diagrammatic in nature, showing the design intent but not showing every detail required for the completed construction. By execution of the Contract by the Contractor, he represents that the Contract Documents, in addition to the subsequent submittals provided by the Contractor and approved by the Architect, are adequate to complete the construction of the several kinds called for.
 - 1.2.5 In addition to the Contract Documents, other drawings may be necessary for the Contractor to carry the Work to a successful conclusion. Such things as additional details and shop drawings may be necessary and the Contractor shall be responsible for preparing all such drawings and submitting them for the Architect's review as required to confirm the intent of the design. The Contractor's schedule shall allow time for submittals of such additional Drawings so as to cause no delay in the Work.
 - 1.2.5.1 The Owner will consider no additional cost or additional contract time for the preparation of these additional drawings, nor will any additional cost or additional contract time be considered for the Work shown in these additional drawings unless it is Work clearly outside the scope of the Contract Documents."

1.5 TRANSMISSION OF DATA IN DIGITAL FORM

A. Delete paragraph 1.6 of the GENERAL CONDITIONS in its entirety.

1.6 COPIES OF CONTRACT DOCUMENTS

A. With reference to subparagraph 2.2.5 of the GENERAL CONDITIONS, if requested, the Contractor will be supplied with not more than six (6) complete printed sets of Contract Documents and one digital PDF format copy of the Contract Documents. Additional complete sets or portions thereof may be issued upon request and on payment of reproduction costs.

1.7 SUPERVISION AND CONSTRUCTION PROCEDURES

A. Delete the last sentence in subparagraph 3.3.3.1 of the GENERAL CONDITIONS in its entirety, and substitute in lieu thereof the following:

"If the Contractor is then instructed to proceed with the required means, techniques, sequences or procedures without acceptance of changes proposed by the Contractor, the Owner shall be responsible for any loss or damage arising from those Owner-required means, methods, techniques, sequences or procedures, unless the Contractor is grossly negligent."

- B. Add the following to paragraph 3.3.1 of the GENERAL CONDITIONS:
 - "3.3.1.1 It is the Contractor's responsibility to complete the Work using the information given in the Contract Documents. The Contractor shall have sufficient engineering and technical resources available to prepare any necessary additional drawings based on the design and specifications contained in the Contract Documents.
 - 3.3.1.2 The Contractor's responsibilities for coordination of the Work extends to coordination of the shop drawings and other drawings necessary, whether prepared by the Architect or the Contractor, to insure the proper execution and completion of the Work."
- C. Add the following to subparagraph 3.3.2 of the GENERAL CONDITIONS:
 - "3.3.2.1 This Contractor shall assume full responsibility for complete coordination with the various other Contractors, in order that all Work of the respective trades, including Contractor's own, shall be done in proper sequence and at the proper time so as not to cause any delay in the progress of any trade or of the entire project."

1.8 LABOR AND MATERIALS

- A. Add the following to subparagraph 3.4.2 of the GENERAL CONDITIONS:
 - "3.4.2.1 Compensation for the Architect's services and expenses related to the evaluation and acceptance of substitutions, and redesign of the Contract Documents, if any, shall be at the Contractor's expense. See Section 012500 for additional information regarding substitution procedures."

1.9 SALES TAX

- A. Reference is made to subparagraph 3.6 of the GENERAL CONDITIONS.
- B. The Contractor will not be required to pay local option sales and use taxes. The Owner will issue the Contractor a tax exempt certificate, appointing the Contractor as purchasing agent.

1.10 PERMITS, FEES AND NOTICES

- A. Delete subparagraph 3.7.5 of the GENERAL CONDITIONS in its entirety, and substitute in lieu thereof the following:
 - "3.7.5 If in the course of the Work, the Contractor knowingly encounters and recognizes human remains, burial markers, archeological sites or previously undelineated wetlands not indicated in the Contract Documents, the Contractor shall immediately suspend any operations that would affect them and shall notify the Owner and Architect. Upon receipt of such notice, the Owner shall promptly take any action necessary to obtain governmental authorization required to resume the operations. The Contractor shall continue to suspend such operations until otherwise instructed by the Owner but shall continue with all other operations that do not affect those remains or features. Requests

for adjustments in the Contract Sum and Contract Time arising from the existence or good faith belief of such existence of such remains or features may be made as provided in Article 15."

- B. Add the following to subparagraph 3.7.1 of the GENERAL CONDITIONS.
 - "3.7.1.1 All assessments for water, gas, and sewer mains; and electrical, telephone, and other utilities which are chargeable against the Project property and are not a part of the project related fees indicated above will be paid by the Owner under the provisions of subparagraph 2.2.2 of these GENERAL CONDITIONS."
- C. The Owner has paid to the City of Omaha Permits and Inspections Department, the building permit fee for this Project and has prepaid the energy/insulation fee. Bidders shall be responsible for all other required permits, including mechanical, electrical, and plumbing permits.
- D. With reference to Subparagraph 3.7.1 of the GENERAL CONDITIONS, the Contractor shall incorporate into the Construction Schedule the time required to obtain the building permit by reflecting the start date of on-site performance to coincide with the anticipated permit issue date.

1.11 SUPERINTENDENT

A. Between the second to the last sentence and the last sentence of subparagraph 3.9.2 of the GENERAL CONDITIONS, add the following;

"If the Owner or Architect replies with reasonable objections, the Contractor shall take reasonable steps to provide a solution to the concerns expressed."

B. Delete the first sentence of subparagraph 3.9.3 of the GENERAL CONDITIONS in its entirety, and substitute in lieu thereof the following:

"The Contractor may employ a proposed superintendent to whom the Owner or Architect has made reasonable and timely objections if the Contractor can address the objections in a reasonable manner. If the Contractor cannot satisfy the concerns of the Owner and Architect, the Contractor, at its sole discretion, may ask to be removed from the project with no penalty and that all bonds and securities returned."

1.12 CONTRACTOR'S CONSTRUCTION SCHEDULES

A. Delete subparagraph 3.10.1 of the GENERAL CONDITIONS in its entirety and substitute in lieu thereof the following:

"3.10.1 Within two weeks after award of the Contract, the Contractor shall submit to the Architect, a chart, the form for which is bound in Section 00 6000, PROJECT FORMS, showing the estimated progress for the various components of the Work, together with a composite curve showing the estimated progress for the entire Work under this Contract.

- 3.10.1.1 Modify the sample chart to indicate separate components of the Work which comprise the total and the percent of the total construction cost for each item listed. List breakdown of items to provide separate items for each Work unit to be performed (not specification sections).
- 3.10.1.2 The Schedule of Values required by subparagraph 9.2 is to be plotted against the projected time of the project to show "Anticipated Monthly Values" and "Accumulated Scheduled Progress" as represented on the sample chart. Such projection shall not amend the requirements of 9.2.
- 3.10.1.3 Thereafter, on the first day of each month, for purposes of comparison, the Contractor shall submit an identical chart showing the actual rate of progress to date for each component listed and for the Work as a whole.
- 3.10.1.4 In the event that the rate of actual progress of the Work falls behind the estimated progress as indicated by the charts, the Contractor shall accelerate the Work to the satisfaction of the Architect."
- B. Delete the last sentence of subparagraph 3.10.2 of the GENERAL CONDITIONS in its entirety, and substitute in lieu thereof the following;

"If the Contractor fails to submit a submittal schedule, the Contractor may not be entitled to any increase in Contract Sum or extension of Contract Time based on the time required for review of submittals."

- C. Add the following subparagraph 3.10.4 to the GENERAL CONDITIONS:
 - "3.10.4 The Contractor will not be allowed to Work in existing building until after May 22, 2015."
 - "3.10.4.1 Whenever the Drawings and Specifications or progress of the Work require the Contractor to perform Work in the existing building(s), the Contractor shall submit a proposed Work Schedule to the Owner and shall not proceed with any part of the Work in the existing building(s) until approval has been received."

1.13 RECORD DOCUMENTS

- A. Add the following to subparagraph 3.11.1 of the GENERAL CONDITIONS:
 - "3.11.1.1 As the Work proceeds, the Contractor shall keep a careful record of mechanical, electrical, underground and other concealed Work whose final in-place locations vary from those shown on the Contract Drawings, whether because of Change Orders or actual job conditions. All such variations shall be shown on the Field Documents to be delivered to the Architect upon completion of the Work and before final payment is processed."

1.14 DOCUMENTS AND SAMPLES AT THE SITE

A. Delete the first sentence in paragraph 3.11 of the GENERAL CONDITIONS in its entirety, and substitute in lieu thereof the following:

"The Contractor shall maintain at the site for the Owner one copy of the Drawings, Specifications, Addenda, Change Orders and other Modifications, in good order and marked currently to indicate field changes and selections made during construction, and one copy of final Shop Drawings, Product Data, Samples and similar required submittals"

1.15 SHOP DRAWINGS, PRODUCT AND SAMPLES

- A. Delete subparagraph 3.12.7 of the GENERAL CONDITIONS in its entirety, and substitute in lieu thereof the following:
 - "3.12.7 The Contractor shall perform no portion of the Work for which the Contract Documents require submittal and review of Shop Drawings, Product Data, Samples or similar submittals until the respective submittal has been reviewed and appropriate action has been taken by the Architect."
- B. Delete subparagraph 3.12.8 of the GENERAL CONDITIONS in its entirety, and substitute in lieu thereof the following;
 - "3.12.8 The Work shall be in accordance with final submittals except that the Contractor shall not be relieved of responsibility for deviations from requirements of the Contract Documents by the Architect's review and appropriate action taken upon Shop Drawings, Product, Samples or similar submittals unless the Contractor has specifically informed the Architect in writing of such deviation at the time of submittal and (1) the Architect has given written instructions to the specific deviation as a minor change in the Work, or (2) a Change Order or Construction Change Directive has been issued authorizing the deviation. The Contractor shall not be relieved of responsibility for errors or omissions in Shop Drawings, Product Data, Samples or similar submittals by the Architect's review and appropriate action taken thereof."
- C. Delete the seventh sentence in subparagraph 3.12.10 of the GENERAL CONDITIONS in its entirety, and substitute in lieu thereof the following;
 - "Pursuant to this Section 3.12.10, the Architect will review and take appropriate action on submittals only for the limited purpose of checking for conformance with information given and the design concept expressed in the Contract Documents."
- D. Add the following subparagraph 3.12.11 of the GENERAL CONDITIONS:
 - "3.12.11 Costs associated with the Architect/Engineer's re-review of any shop drawing, product data or sample that has not received an action from the Architect/Engineer of 'No Exceptions Noted' or 'Exceptions Noted' within the first submission or the first resubmission of any shop drawing, product data or sample shall be at the Contractor's expense."

1.16 USE OF SITE

- A. Add the following to paragraph 3.13 of the GENERAL CONDITIONS:
 - "3.13.1 Sanitary conveniences for use of all persons employed on the Work (including concurrent work as described in Section 011000 SUMMARY) shall be provided and maintained by the Owner in sufficient number and in such manner and in such places as determined by the Owner. Only chemical toilets will be available."
 - "3.13.2 The Owner will furnish such reasonable amounts of gas, heat, water and electricity as may be needed for the prosecution of the Work, however, the Contractor shall be responsible for all connections, extensions and miscellaneous equipment to bring utilities to places of Work."
 - "3.13.3 The Contractor shall arrange the Work so that it does not necessitate long periods of shut-down of existing facilities, and these shut-downs shall be coordinated with and at the convenience of the Owner."

1.17 CLEANING UP

- A. Add the following to subparagraph 3.15.1 of the GENERAL CONDITIONS:
 - "3.15.1.1 The Contractor shall, after the Work has been completed, complete the following cleaning up:
 - 1. Clean all glass and mirrors.
 - 2. Vacuum clean interior of building, including HVAC ducts.
 - 3. Hand dust, clean and polish all finish surfaces including shelving and cabinet interiors.
 - 4. Wax and polish finish floors.
 - 5. Clean all hardware.
 - 6. Clean all fixtures.
 - 7. Clean all mechanical and utility rooms, pipe chases, and accessible service areas of debris, dust and excess construction materials.
 - 8. Comply with all special cleaning instructions contained in the Specifications.
 - 9. Leave the entire construction and Site clean and ready for occupancy."
- B. In addition to the clean up required by subparagraph 3.15.1 of the GENERAL CONDITIONS, the Contractor shall provide clean up as specified in Section 01 7700, CLOSEOUT PROCEDURES.

1.18 ADMINISTRATION OF THE CONTRACT

- A. Reference is made to Paragraph 4.2 of the GENERAL CONDITIONS.
- B. The Architect will not provide administration of the Contract. The Architect's duties during construction will be limited to the following:
 - 1. Visit the Project Site at the request of Owner.
 - 2. Review shop drawings, product data and samples (at the request of Owner).

- 3. Interpret requirements of the Contract Documents at the request of Owner.
- 4. Provide consultation to the Owner at the request of the Owner relative to amounts owed the Contractor and/or the performance of the Contractor of contractual obligations.
- C. The word "Architect," as it appears in the GENERAL CONDITIONS (and the Technical Specifications), except to the extent of the duties described above, shall mean "Owner."
- D. Delete the first sentence of subparagraph 4.2.7 of the GENERAL CONDITIONS and substitute in lieu thereof the following:

"The Architect will review and take appropriate action upon the Contractor's submittals such as Shop Drawings, Product Data and Samples, but only for the limited purpose of checking for conformance with information given and the design concept expressed in the Contract Documents."

1.19 CONSTRUCTION CHANGE DIRECTIVES

- A. Delete subparagraph 7.3.6 of the GENERAL CONDITIONS in its entirety and substitute in lieu thereof the following:
 - "7.3.6 A Construction Change Directive signed by the Contractor indicates the agreement of the Contractor therewith, including adjustments in Contract Sum and Contract Time or the method of determining them."
- B. Add the following subparagraph to paragraph 7.3.8 of the GENERAL CONDITIONS:
 - "7.3.8.1. Upon final determination of the cost or credit to the Owner and inclusion of the change in the Work and the amount due in a Change Order, the cost or credit may be included in Applications for Payment."

1.20 MINOR CHANGES IN THE WORK

A. Add the following subparagraph 7.4 to the GENERAL CONDITIONS:

"7.4 MINOR CHANGES IN THE WORK

7.4.1 Should the minor changes in the Work so directed result in an actual change in the cost of the Work, claim for reimbursement of such costs shall be made promptly by the Contractor under subparagraph 7.3.7 of the GENERAL CONDITIONS."

1.21 APPLICATIONS FOR PAYMENT

- A. Reference is made to paragraph 9.3 of the GENERAL CONDITIONS, and to Section 01 2900, PAYMENT PROCEDURES.
- B. Delete in its entirety, subparagraph 9.3.1.1.

- C. Delete in its entirety subparagraph 9.3.2 and substitute in lieu thereof the following:
 - "9.3.2 Subject to issuance of Certificates of Payment, payments will become due and payable each month in accordance with the provisions of the GENERAL CONDITIONS in the amount of ninety percent of the proportion of the Contract sum properly allocable to labor, materials and equipment incorporated in the construction and ninety percent of the portion of the Contract sum properly allocable to materials and equipment suitably stored at the Site less the aggregate of previous payments in each case. Payments for materials or equipment stored on the Site shall be conditioned upon compliance by the Contractor with procedures satisfactory to the Owner to establish the Owner's title to such materials and equipment or otherwise protect the Owner's interest."
 - "9.3.2.1 When the Project has progressed to a point which is considered by the Owner to be fifty percent completed, and if the Project is considered by the Owner to be on schedule, the retainage stipulated by the above paragraph may be reduced. The amount of reduction in retainage, if approved, shall be negotiated based on the progress of the Work and the quality of the Work in place. Any reduction in retainage must have the approval of the surety named in the performance and labor and material payment bonds. The retainage stipulated in paragraph 9.3.2 may be reinstated if completion of the Work and its progress do not, in the opinion of the Owner, continue in a satisfactory manner (or if said surety withholds consent) or for other good and sufficient reasons."

1.22 DECISIONS TO WITHHOLD CERTIFICATION

A. Delete subparagraph 9.5.3 of the GENERAL CONDITIONS in its entirety.

1.23 HAZARDOUS MATERIALS

A. At the end of subparagraph 10.3.4 of the GENERAL CONDITIONS, add the following:

"Unless required by the Contract Documents, the Contractor shall not be required to perform without its consent any Work relating to a hazardous material or substance, provided that the Contractor's consent shall not be unreasonably withheld."

1.24 CONTRACTOR'S LIABILITY INSURANCE

- A. The insurance referred to in paragraph 11.1 of the GENERAL CONDITIONS, shall be of the following types and in amounts not less than the following:
 - 1. Worker's Compensation:
 - a. State: Statutory
 - b. Applicable Federal (e.g., longshoreman, harbor work, work at or outside U.S. Boundaries): Statutory
 - c. Employer's Liability: Worker's Compensation Statutory
 - d. Benefits required by union labor contracts: as applicable
 - 2. General Liability (including Premises-Operations, Independent Contractors' Protective, Products and Completed Operations, Broad Form Property Damage):
 - a. Bodily Injury:

- 1) \$2,000,000 each occurrence
- b. Property Damage:
 - 1) \$2,000,000 each occurrence
- c. Products and Completed Operations Insurance shall be maintained for a minimum period of 2 years after final payment and Contractor shall continue to provide evidence of such coverage to Owner on an annual basis during the aforementioned period.
- d. Property Damage Liability Insurance shall include coverage for the following hazards:
 - 1) X (Explosion)
 - 2) C (Collapse)
 - 3) U (Underground)
- e. Contractual Liability (hold harmless coverage):
 - 1) Bodily Injury: \$2,000,000 each occurrence
 - 2) Property Damage:
 - a) \$1,000,000 each occurrence
 - b) \$1,000,000 Aggregate
- f. Personal Injury, with employment exclusion deleted: N/A
- 3. Umbrella Excess Liability:
 - a. Over Primary Insurance: N/A
 - b. Retention: N/A
- 4. Automobile Liability (owned, non-owned, hired):
 - 1) \$2,000,000 Combined Single Limit
- B. Add the following to subparagraph 11.1.3 of the GENERAL CONDITIONS:
 - "11.1.3.1 Furnish one copy of certificate required herein for each copy of the agreements, which specifically establishes evidence of coverage required by these GENERAL CONDITIONS. The form shall be the ACCORD 25-S (7/90) Certificate of Insurance, including Supplemental Attachment, AIA Document G715."
- C. Delete subparagraph 11.3.3 in its entirety.

1.25 PROPERTY INSURANCE

- A. Reference is made to paragraph 11.3 of the GENERAL CONDITIONS.
- B. Delete subparagraph 11.3.6 of the GENERAL CONDITIONS in its entirety, and substitute in lieu thereof the following:
 - "11.3.6 Before an exposure to loss may occur, the Owner shall file with the Contractor and the Architect copies of each policy that includes insurance coverages required by this Section 11.3. Each policy shall contain all generally applicable conditions, definitions, exclusions and endorsements, including waivers of subrogation in accordance with subparagraph 11.3.7, as related to this Project. Each policy shall contain a provision that the policy will not be canceled or allowed to expire, and that its limits will not be reduced, until at least 30 days prior written notice has been given to the Contractor and the Architect."

C. Property insurance provided by the Owner includes a deductible in the amount of \$2,500.00 for wind and hail related incidents, \$500.00 for all other incidents. The Contractor is responsible for such coverage as may be required to cover losses to Contractor owned and/or controlled materials and equipment to the amount of the deductible.

1.26 PERFORMANCE BOND AND PAYMENT BOND

A. With reference to paragraph 11.4. of the GENERAL CONDITIONS, add the following:

"11.4.3 Except where the Owner and the Contractor agree to waive the requirements, all subcontractors, where the subcontract exceeds \$2,500.00, shall furnish performance bond and labor and material payment bond with a surety licensed to conduct business in the state where the Project is located and whose limits of insurability, measured by the current United States Treasury Department Listing of Treasury Limits, are at least equal to the amount of the subcontract, guaranteeing the completion of the Work, performance of the subcontract, and the payment for all labor and materials incorporated in the Work. Said bonds shall be written on the standard AIA Document No. A-312, current edition. The amount of coverage for said bond shall be 100 percent of the subcontract price."

1.27 TESTS AND INSPECTIONS

- A. Delete in its entirety subparagraph 13.5.1 of the GENERAL CONDITIONS, and substitute in lieu thereof the following:
 - "13.5.1 Tests, inspections and approvals of portions of the Work required by the Contract Documents or by laws, ordinances, rules, regulations or orders of public authorities having jurisdiction shall be made at an appropriate time.
 - a. Unless otherwise provided, the Contractor shall make arrangements for such tests, inspections and approvals with an independent testing laboratory or entity acceptable to the Owner, or with the appropriate public authority. The Contractor shall give the Architect timely notice of when and where tests and inspections are to be made so the Architect may observe such procedures.

1.28 CONDITIONS FOR WORK

A. The Owner will continue to occupy the school throughout the construction operations, and the Contractor shall so organize his Work as to cause a minimum of interference with the normal routine activities.

1.29 DELIVERY AND STORAGE OF MATERIALS

A. Materials and equipment cannot be stored on sidewalks, service drive or loading dock, but must be taken into the place of work immediately.

B. All materials delivered to the site must be received by Contractor or Subcontractor personnel. No deliveries will be received by the Owner, and, in the absence of the Contractor / Subcontractor personnel, will be rejected.

1.30 OWNER-FURNISHED ITEMS

- A. Certain items will be furnished by the Owner and shall be installed by the Contractor. This includes all items which are generally categorized in the groupings hereinafter, but does not preclude the inclusion of other items as noted on the Drawings. The Owner will deliver these items to the Site, unload same and stack materials where directed by the Contractor and approved by the Architect. The Contractor will be responsible for unwrapping, uncrating, counting, verifying sizes and lengths and providing all labor, equipment and services necessary for the erection of all materials detailed or specified herein.
- B. The Owner will provide the Contractor with adequate shop drawings to cover the complete installation of all Owner-furnished items, except when items are existing, relocated or reused.
- C. This Contractor shall be required to perform all field cutting, fitting and adjustments as might be required to complete the Work. Carefully coordinate the Work with the Owner to preclude omission or double supply. The Contractor shall submit a delivery date request to the Architect for all Owner-supplied materials to insure the availability of these materials as they become needed.
- D. List of Owner-Furnished Items:
 - 1. Elevator (materials and installation).

1.31 ADDITIONAL REQUIREMENTS FROM THE OWNER

A. See attached "Addendum to Construction Contract" attached to the end of this section. This document will be made part of the agreement between Owner and Contractor.

1.32 LIST OF DRAWINGS

A. The Drawings are listed on the "Title Sheet" or "Index of Drawings" sheet, included in the Contract Drawings. This list of Drawings, which forms a part of the Contract Documents, will be made a part of the agreement and attached thereto.

PART 2 - PRODUCTS (NOT USED)

PART 3 - PRODUCTS (NOT USED)

END OF SECTION 007300

Catholic Mutual. . . "CARES"

ADDENDUM TO CONSTRUCTION CONTRACT

Typically when organizations are adding an addition, undergoing a major renovation or remodeling their facilities, a written contract is signed with a contractor. The Addendum to Construction Contract should be attached to contracts with contractors performing work at your parish. The Addendum to Construction Contract should be utilized in the following situations:

- 1. When your organization enters into a construction, renovation, or remodeling contract in excess of \$10,000 with a contractor or architect. For small contractor jobs that are under \$10,000 (or the threshold of your Arch/Diocesan Construction Contract Review Policy), it is not a requirement for your organization to utilize the Addendum to Construction Contract. However, the organization must still verify that these contractors have liability insurance covering their construction operations at the parish.
- 2. When a contractor is performing an unusual or dangerous construction procedure at your parish. An example of this would be a contractor job involving the use of scaffolding or which calls for asbestos removal.

By attaching the Addendum to Construction Contract to the contract or incorporating its wording into a contract, your parish will satisfy insurance requirements. If the Addendum to Construction Contract is not attached to the contract with a contractor, the wording of the addendum must be incorporated into the contract developed by the parish and the contractor. The parish should always verify that the contractor has named the parish as an additional insured on their commercial general liability insurance policy. It is not adequate for the parish to obtain a certificate of insurance which names the parish as a "certificate holder."

Your Arch/Diocese likely has a construction contract review policy already in place which advises a threshold for use of this addendum. If not, construction contracts over \$10,000 or contracts dealing with a construction process of an unusual nature should be submitted to Catholic Mutual for review before the parish signs them. Should a contractor have questions regarding the requirements outlined on the Addendum to Construction Contract, please have them contact Catholic Mutual at 1-800-228-6108.

ADDENDUM TO CONSTRUCTION CONTRACT

BUILDER'S RISK INSURANCE: A Builder's Risk and Boiler and Machinery Coverage will be obtained by OWNER to cover the project. Any payment under Builder's Risk or Boiler and Machinery Coverages will be made jointly to OWNER and CONTRACTOR. Further, OWNER and CONTRACTOR agree that any payment under Builder's Risk or Boiler and Machinery Coverages will be placed into a joint account until such funds are reinvested in the construction project.

COMMERCIAL GENERAL LIABILITY INSURANCE: While CONTRACTOR is performing operations at PARISH, CONTRACTOR shall maintain commercial general liability insurance in the amount of not less than two million dollars (\$2,000,000) per occurrence. It is further agreed that the CONTRACTOR agrees to protect, defend, indemnify, and hold harmless the PARISH against and from any claim or cause of action arising out of or from any negligence or other actionable fault of the CONTRACTOR, or its employees, agents, members, or officers.

AUTOMOBILE LIABILITY INSURANCE: CONTRACTOR shall maintain automobile liability insurance for any owned autos, hired autos or non-owned autos used in connection with the contractor's business. Automobile liability coverage should be maintained by the CONTRACTOR in the minimum amount of two million dollars (\$2,000,000) combined single limit.

WORKER'S COMPENSATION INSURANCE: CONTRACTOR shall maintain worker's compensation insurance as required by law.

ADDITIONAL INSURED: CONTRACTOR agrees to provide a certificate of insurance to the PARISH which will name the PARISH as an additional insured on CONTRACTORS liability policy for claims arising out of CONTRACTORS, subcontractors or sub-subcontractors operations or made by CONTRACTORS, subcontractors or sub-subcontractors, employees, agents, guests, customers, invitees or subcontractors. CONTRACTOR must verify its liability insurance policy is primary in the event of a covered claim or cause of action against PARISH.

SUBCONTRACTORS: CONTRACTOR shall be required to verify that all subcontractors maintain general liability insurance, worker's compensation insurance and automobile liability insurance. Furthermore, CONTRACTOR agrees to indemnify and defend the PARISH for any claim or cause of action, whatsoever which was caused by the negligence, or other actionable fault of an uninsured subcontractor.

NO WAIVER OF SUBROGATION: OWNER does not waive any rights of recovery against the CONTRACTOR, subcontractor or sub-subcontractor for any damages. OWNER and CONTRACTOR, subcontractor and sub-subcontractor do waive the right of recovery against each other for any damages covered under Property, Builders Risk or Boiler and Machinery coverage for which either party is responsible <u>if</u> that party does not have liability insurance to cover such damages and liability insurance has been maintained as required by this document.

CONTRACT OVERRIDE AND SEVERABILITY PROVISION: CONTRACTOR and PARISH agree that this addendum overrides any and all portions of previous agreements between CONTRACTOR and PARISH that contain language in contradiction with this contract. If any portion of this Addendum to Construction Contract is deemed or is determined to be in conflict with local or state or national statutes, both CONTRACTOR and PARISH agree that the portion of the Addendum to Construction Contract which is in conflict with the statute will be stricken from the Addendum to Construction Contract with the remainder of the Addendum to Construction Contract remaining binding for both parties.

CONTRACTOR:	PARISH:
BY:	(PARISH is understood to include the Arch/Diocese of) BY:
NAME	NAME
DATE	DATE
START DATE OF CONTRACT (Und	ierstood to be date signed if left blank):

Instruction to Parish (Parish Use Only): This Addendum to Construction Contract stands on its own as a legal contract between PARISH and CONTRACTOR should this addendum not be incorporated or attached to a contract.

(Revised 09/12)

Catholic Mutual. . . "CARES"

AIA and AGC DOCUMENTS (Needed Deletions to Various Construction Contracts)

When parishes enter into a contract for a major renovation or remodeling project of parish facilities or for the construction of a new building, a contract is signed with the general contractor. In most instances, the contract required is a standard contract prepared by the American Institute of Architects or by the Associated General Contractors of America. Two of the most common standard contracts are the AIA Document A201 and AIA Document A107. There are also many other AIA and AGC contracts.

From an insurance and indemnification standpoint, the standard documents are written in favor of the contractor and/or sub-contractor. Fortunately, the contracts can be altered to make them more equitable for parishes.

Attached is a contract which allows for changes to be made to various AIA and AGC contracts. Please note the changes are only intended to address insurance and indemnification concerns. Other areas of the contract should be reviewed on behalf of the parish by a qualified attorney and the Arch/Diocesan Building Office.

Catholic Mutual. . . "CARES"

Please check the box next to the document which is being utilized. Checked boxes will denote the deletion and/or modification of the corresponding AIA or AGC contract as shown below.

ADDENDUM/CHANGES TO AIA or AGC CONTRACT

Owner and Contractor agree that the deletions and/or changes outlined below will be binding and alter the corresponding AIA or AGC contract that is referenced. Both Owner and Contractor agree the Addendum will supersede any other contractual language.

- ☐ AIA Document A201 1987 edition
 - General Conditions of the Contract for Construction
 - 10.1.4 Delete second from last sentence (beginning with "regardless of whether or not...")
 - 11.3.1 Delete second half of first sentence (beginning after semicolon with "This insurance shall...")
 - 11.3.2 Delete entire paragraph
 - 11.3.3 Delete entire paragraph
 - 11.3.5 Delete entire paragraph
 - 11.3.7 Delete entire paragraph
- ☐ AIA Document A201 1997 edition

General Conditions of the Contract for Construction

- 10.3.3 Delete the word "sole" from the last sentence
- 11.3.3 Delete entire paragraph
- 11.4.1 Delete last sentence only (beginning with "This insurance shall...")
- 11.4.2 Delete second half of first sentence (beginning after semicolon with "This insurance shall...")
- 11.4.3 Delete entire paragraph
- 11.4.5 Delete entire paragraph
- 11.4.7 Delete entire paragraph
- ☐ AIA DOCUMENT A201-2007 edition

General Conditions of the Contract for Construction

- 11.3.1 Add sentence to end "While the interests of all parties are covered, only the Owner will be named as an insured"
- 11.3.2 Delete second half of last sentence "and the Owner and Contractor shall be named insureds". Add sentence to end of paragraph "Owner and Contractor agree only the Owner will be an insured on the policy"
- 11.3.3 & 11.3.5 Add sentence to end of each "This paragraph does not apply to the extent Owner, Contractor, subcontractor, sub-subcontractor, architect, architects consultants, or an agent of any of the above has liability insurance to cover damages sustained by Owner or Contractor."

- 11.3.7 Add sentence to end "This paragraph does not apply to the extent Owner, Contractor, subcontractor, sub-subcontractor, architect, architects consultants, or an agent of any of the above has liability insurance to cover damages sustained by Owner or Contractor."
- 15.1.6 Delete entire paragraph
- ☐ AIA DOCUMENT A107 1987 edition

Abbreviated Form of Agreement Between Owner and Contractor for Construction Projects of Limited Scope

- 17.2 Delete last sentence only (beginning with "The Contractor shall...")
- 17.3 Delete last sentence only (beginning with "This insurance shall...")
- 17.6 Delete entire paragraph
- ☐ AIA Document A107 1997 edition

Abbreviated Standard Form of Agreement Between Owner and Contractor for Construction Projects of Limited Scope

- 15.2.2 Delete the word "sole" from the last sentence
- 16.3.3 Delete entire paragraph
- 16.4.1 Delete last sentence only (beginning with "this insurance shall...")
- 16.5.1 Delete entire paragraph
- ☐ AIA Document A107 2007 edition

Standard Form of Agreement Between Owner and Contractor for a Project of Limited Scope

- 17.3.1 Replace last sentence with "While the interests of all parties are covered, only the Owner will be named as an insured"
- 17.3.3 Add sentence to end of paragraph "This paragraph does not apply to the extent Contractor, subcontractor, subcontractor, architect, architects consultants, or an agent of any of the above has liability insurance to cover damages sustained by Owner"
- ☐ AIA Document A201/CMa 1992 edition

Standard Form of Agreement Between Owner and Architect where the Construction Manager is NOT a Constructor

- 10.1.4 Delete the phrase "in whole or in part" in the second line from the bottom of paragraph
- 11.3.1 Delete last sentence only
- 11.3.2 Delete "this insurance shall include interests of the Owner, Construction Manager, Contractor, Subcontractors and Sub-subcontractors in the Work and the Owner and Contractor shall be named insureds" beginning in the fifth line of the paragraph
- 11.3.5 Delete entire paragraph
- 11.3.7 Delete entire paragraph
- 11.3.8 Delete entire paragraph
- 11.3.9 Delete entire paragraph
- 11.3.10 Delete entire paragraph

AGC Document 410 – 1993 edition П Standard Form of Design – Build Agreement and General Conditions Between Owner and Contractor 11.5.1 Delete second sentence only (beginning with "This insurance shall...") 11.5.3 Delete entire paragraph 11.5.4 Delete entire paragraph 11.6.1 Delete entire paragraph 11.7.1 Delete entire paragraph 11.7.2 Delete entire paragraph П AGC Document 415 – 1993 edition Standard Form of Design - Build Agreement and General Conditions Between Owner and Contractor 10.1.2 Delete entire paragraph 10.5.1 Delete Contractor, Architect/Engineer, Subcontractors and Subsubcontractors from the second sentence in lines two and three 10.5.4 Delete Contractor, Architect/Engineer, Subcontractors and Subsubcontractors from the first sentence in lines one and two and the entire last sentence (beginning with "Exposures of the...") 10.5.5 Delete last sentence only (beginning with "If the Contractor...") 10.7.1 Delete entire paragraph 10.7.2 Delete entire paragraph П AIA Document A191 – Electronic Format – 1996 edition Standard Form of Agreements Between Owner and Design/Builder 7.2.1 Delete last sentence only (beginning with "The Design/Builder shall...") 7.3.1 Delete last sentence only (beginning with "This insurance shall...") 7.3.3 Delete entire paragraph 7.3.4 Delete last two sentences (beginning with "This insurance shall...") 7.3.8 Delete entire paragraph 7.4.1 Delete entire paragraph AIA Document B101 – 2007 edition Standard Form of Agreement Between Owner and Architect 8.1.2 Delete entire paragraph 8.1.3 Delete entire paragraph 8.2.4 Add the following: Both parties agree the method of binding dispute resolution will be "Litigation in a court of competent jurisdiction." AIA Document B141 – 1987 edition Standard Form of Agreement Between Owner and Architect 9.4 Delete entire paragraph AIA Document B141 — 1997 edition Standard Form of Agreement Between Owner and Architect with Standard Form of Architects Services 1.3.6 Delete entire paragraph 1.3.7.4 Delete entire paragraph

	1.4.2.1		This paragraph does not apply to the extent Architect liability insurance to cover negligence errors or
		Oocument B151-1997 edition viated Standard Form of Agre Delete entire paragraph	eement Between Owner and Architect
	AGC Document 250 – 2000 edition Standard Form of Agreement and General Conditions Between Owner and Contr 11.1.1 Delete the phrase "other than to the work itself and other property insured under Subparagraph 11.4" from the first sentence (beginning in the third I 11.1.2 Owner will not be responsible to indemnify for any act or omission of an Architect/Engineers or Others 11.2 Delete entire paragraph 11.4.1 Delete the second sentence (beginning with "This insurance shall also nar and delete the fourth sentence (beginning with "This policy shall provide a waiver") 11.4.3 Delete entire paragraph up to the word "more" in the eighth line. The rest the paragraph (beginning with "the Contractor shall indemnify") remains		
CONT	RACT	OR:	PARISH:
BY:			(PARISH is understood to include the Arch/Diocese of) BY:
NAM	E		NAME
DATE (Revised			DATE

SECTION 011000 - SUMMARY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Project information.
 - 2. Work by Owner.
 - 3. Access to site.
 - 4. Coordination with occupants.
 - 5. Work restrictions.
 - 6. Miscellaneous provisions.

1.3 PROJECT INFORMATION

- A. Project Identification: St. Thomas More School Elevator Addition.
 - 1. Project Location: 3515 S. 48th Avenue, Omaha, NE, 68106.
- B. Owner: St. Thomas More Catholic Church, 4804 Grover Street, Omaha, NE, 68106.
- C. Architect: LEO A DALY, 8600 Indian Hills Drive, Omaha, NE, 68114.

1.4 WORK BY OWNER

- A. General: Cooperate fully with Owner so work may be carried out smoothly, without interfering with or delaying work under this Contract or work by Owner. Coordinate the Work of this Contract with work performed by Owner.
- B. Concurrent Work: Owner will perform the following construction operations at Project site. Those operations will be conducted simultaneously with work under this Contract.
 - 1. Materials and labor required for the installation of the elevator.
 - 2. Materials and labor required for the installation of a new electrical service for the entire building.
 - 3. Materials and labor required for the installation of a new fire alarm system for the entire building.
 - 4. Materials and labor required for the abatement of asbestos-containing material within the areas of renovation associated with the elevator addition.

1.5 ACCESS TO SITE

- A. General: Contractor shall have limited use of Project site for construction operations as indicated on Drawings by the Contract limits and as indicated by requirements of this Section.
- B. Use of Site: Limit use of Project site to work in areas indicated. Do not disturb portions of Project site beyond areas in which the Work is indicated.
 - 1. Driveways, Walkways and Entrances: Keep driveways loading areas, and entrances serving premises clear and available to Owner, Owner's employees, and emergency vehicles at all times. Do not use these areas for parking or storage of materials unless approved in advance by the Owner.

- 2. Coordinate with the Owner regarding final location(s) of staging and waste containment, crane access, protection of existing trees and other landscape features such as retaining walls, playground equipment, fencing, etc.
- C. Condition of Existing Building: Maintain portions of existing building affected by construction operations in a weathertight condition throughout construction period. Repair damage caused by construction operations.

1.6 COORDINATION WITH OCCUPANTS

- A. Owner Occupancy: Owner will partially occupy site and existing building during the summer months, and the entire facility during the school year. Cooperate with Owner during construction operations to minimize conflicts and facilitate Owner usage. Perform the Work so as not to interfere with Owner's day-to-day operations. Maintain existing exits unless otherwise indicated.
 - 1. Maintain access to existing walkways, corridors, and other adjacent occupied or used facilities. Do not close or obstruct walkways, corridors, or other occupied or used facilities without written permission from Owner and approval of authorities having jurisdiction.
 - 2. Notify Owner not less than 72 hours in advance of activities that will affect Owner's operations.

1.7 WORK RESTRICTIONS

- A. Work Restrictions, General:
 - Comply with limitations on use of public streets and with other requirements of authorities having jurisdiction.
- B. Existing Utility Interruptions: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after providing temporary utility services according to requirements indicated:
 - 1. Notify Owner not less than two days in advance of proposed utility interruptions.
- C. Noise, Vibration, and Odors: Coordinate operations that may result in high levels of noise and vibration, odors, or other disruption to Owner occupancy with Owner.
 - 1. Notify Owner not less than two days in advance of proposed disruptive operations.
- D. Nonsmoking Building: Smoking is not permitted within the building, or within 25 feet (8 m) of entrances, operable windows, or outdoor-air intakes.
- E. Controlled Substances: Use of tobacco products and other controlled substances on Project site is not permitted.
- F. Employee Identification: Provide identification tags for Contractor personnel working on Project site. Require personnel to use identification tags at all times.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 011000

SECTION 012300 - ALTERNATES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for alternates.

1.3 DEFINITIONS

- A. Alternate: An amount proposed by bidders and stated on the Proposal for certain work defined in the bidding requirements that may be added to or deducted from the base bid amount if Owner decides to accept a corresponding change either in the amount of construction to be completed or in the products, materials, equipment, systems, or installation methods described in the Contract Documents.
 - 1. Alternates described in this Section are part of the Work only if enumerated in the Agreement.
 - The cost or credit for each alternate is the net total addition to or net total deduction from the Contract Sum to incorporate alternate into the Work. No other adjustments are made to the Contract Sum.

1.4 PROCEDURES

- A. Coordination: Revise or adjust affected adjacent and related work as necessary to completely integrate work of the alternate into Project.
 - 1. Include as part of each alternate, miscellaneous devices, accessory objects, and similar items incidental to or required for a complete installation whether or not indicated as part of alternate.
- B. Notification: Immediately following award of the Contract, Contractor shall notify each party involved, in writing, of the status of each alternate, indicating if alternates have been accepted, rejected, or deferred for later consideration. Include a complete description of negotiated revisions to alternates, if any.
- C. Execute accepted alternates under the same conditions as other work of the Contract.
- D. Schedule: A schedule of alternates is included at the end of this Section. Specification Sections referenced in schedule contain requirements for materials necessary to achieve the work described under each alternate.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 SCHEDULE OF ALTERNATES

- A. Alternate No. 1 New reception area.
 - 1. Base Bid: The interior of level one remains as is with the following exceptions:
 - a. New interior wall between room nos. 101/102 and 103.
 - b. Door nos. 101B and 104 required to access the addition
 - c. Any mechanical or electrical work required to complete the installation within the new addition (such as connections to existing systems.)
 - 2. Alternate No. 1 New Receptionist Office Renovation: Remove existing walls and provide new partitions, doors, frames, finishes, HVAC, lighting, etc., within limits indicated on the Drawings.

SECTION 012500 - SUBSTITUTION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including Supplementary Notes and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for substitutions.
- B. Related Requirements:
 - 1. Section 012300 "Alternates" for products selected under an alternate.

1.3 DEFINITIONS

A. Substitutions: Changes proposed by the Contractor of products, materials, equipment, and methods of construction from those required by the Contract Documents.

1.4 ACTION SUBMITTALS

- A. Substitution Requests: Submit three copies of each request for consideration. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.
 - 1. Substitution Request Form: Use Substitution Application/Value Engineering Proposal form included in Section 006000 "Project Forms ."
 - 2. Documentation: Show compliance with requirements for substitutions, complete all statements, sign Substitution Application/Value Engineering Proposal form, and the following, as applicable:
 - a. Statement indicating why specified product or fabrication or installation cannot be provided, if applicable.
 - b. Coordination information, including a list of changes or revisions needed to other parts of the Work and to construction performed by Owner and separate contractors that will be necessary to accommodate proposed substitution.
 - c. Detailed comparison of significant qualities of proposed substitution with those of the Work specified to include attributes such as performance, weight, size, durability, visual effect, sustainable design characteristics, warranties, and specific features and requirements indicated. Indicate deviations, if any, from the Work specified.
 - d. Product Data, including drawings and descriptions of products and fabrication and installation procedures.
 - e. Samples, where applicable or requested.
 - f. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners.
 - g. Material test reports from a qualified testing agency indicating and interpreting test results for compliance with requirements indicated.
 - h. Research reports evidencing compliance with building code in effect for Project, from ICC-ES.
 - i. Detailed comparison of Contractor's construction schedule using proposed substitution with products specified for the Work, including effect on the overall Contract Time. If specified product or method of construction cannot be provided within the Contract Time, include letter from manufacturer, on manufacturer's letterhead, stating date of receipt of purchase order, lack of availability, or delays in delivery.

- j. Cost information reflecting reduction in the Contract Sum, if any, including costs reflected for evaluation and redesign efforts required by the Architect/Engineer to accommodate the substitution.
- k. Contractor's certification that proposed substitution complies with requirements in the Contract Documents is compatible with related materials, and is appropriate for applications indicated.
- 1. Contractor's waiver of rights to additional payment or time that may subsequently become necessary because of failure of proposed substitution to produce indicated results.
- 3. Architect's Action: The Architect will review proposed substitutions only if directed by the Owner. If necessary, Architect will request additional information or documentation for evaluation within 7 calendar days of receipt of a request for substitution. Architect will notify Contractor of acceptance or rejection of proposed substitution within 15 days of receipt of request, or 15 days of receipt of additional information or documentation, whichever is later.
 - a. Form of Acceptance: Return of fully noted and initialed copy of Substitution Application/Value Engineering Proposal form.
 - b. Use product specified if Architect does not issue a decision on use of a proposed substitution within time allocated.

1.5 QUALITY ASSURANCE

A. Compatibility of Substitutions: Investigate and document compatibility of proposed substitution with related products and materials. Engage a qualified testing agency to perform compatibility tests recommended by manufacturers.

1.6 PROCEDURES

A. Coordination: Revise or adjust affected work as necessary to integrate work of the approved substitutions.

PART 2 - PRODUCTS

2.1 SUBSTITUTIONS

- A. Timing of Substitutions: Architect will consider requests for substitution if received within 60 days after commencement of the Work. Requests received after that time may be considered or rejected at discretion of Architect.
 - 1. Conditions: Architect will consider Contractor's request for substitution when the following conditions are satisfied. If the following conditions are not satisfied, Architect will return requests without action, except to record noncompliance with these requirements:
 - a. The Owner requests the Architect to review the proposed substitution.
 - b. Requested substitution is submitted under signed Substitution Application/Value Engineering Proposal form bound in Section 006000, "Project Forms."
 - c. Requested substitution offers Owner a substantial advantage in cost, time, energy conservation, or other considerations, after deducting additional responsibilities Owner must assume. Owner's additional responsibilities may include compensation to Architect for redesign and evaluation services, increased cost of other or adjacent construction, and similar considerations.
 - d. Requested substitution does not require extensive revisions to the Contract Documents.
 - e. Requested substitution is consistent with the Contract Documents and will produce indicated results.
 - f. Substitution request is fully documented and properly submitted.
 - g. Requested substitution will not adversely affect Contractor's construction schedule.
 - h. Requested substitution has received necessary approvals of authorities having jurisdiction.
 - i. Requested substitution is compatible with other portions of the Work.
 - j. Requested substitution has been coordinated with other portions of the Work.
 - k. Requested substitution provides specified warranty.

1. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.

PART 3 - EXECUTION (Not Used)

END OF SECTION 012500

SECTION 013100 - PROJECT MANAGEMENT AND COORDINATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative provisions for coordinating construction operations on Project including, but not limited to, the following:
 - 1. General coordination procedures.
 - 2. Requests for Information (RFIs).
 - 3. Project meetings.
- B. Related Requirements:
 - 1. Section 017700 "Closeout Procedures" for coordinating closeout of the Contract.

1.3 DEFINITIONS

A. RFI: Request from Owner, Architect, or Contractor seeking information required by or clarifications of the Contract Documents.

1.4 INFORMATIONAL SUBMITTALS

- A. Subcontract List: Prepare a written summary identifying individuals or firms proposed for each portion of the Work, including those who are to furnish products or equipment fabricated to a special design. Include the following information in tabular form:
 - 1. Name, address, and telephone number of entity performing subcontract or supplying products.
 - 2. Number and title of related Specification Section(s) covered by subcontract.
 - 3. Drawing number and detail references, as appropriate, covered by subcontract.
- B. Key Personnel Names: Within 15 days of starting construction operations, submit a list of key personnel assignments, including superintendent and other personnel in attendance at Project site. Identify individuals and their duties and responsibilities; list addresses and telephone numbers, including home, office, and cellular telephone numbers and e-mail addresses. Provide names, addresses, and telephone numbers of individuals assigned as alternates in the absence of individuals assigned to Project.

1.5 GENERAL COORDINATION PROCEDURES

- A. Coordination: Coordinate construction operations included in different Sections of the Specifications to ensure efficient and orderly installation of each part of the Work. Coordinate construction operations, included in different Sections, that depend on each other for proper installation, connection, and operation.
 - 1. Schedule construction operations in sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation.
 - 2. Coordinate installation of different components to ensure maximum performance and accessibility for required maintenance, service, and repair.
 - 3. Make adequate provisions to accommodate items scheduled for later installation.

- B. Prepare memoranda for distribution to each party involved, outlining special procedures required for coordination. Include such items as required notices, reports, and list of attendees at meetings.
 - 1. Prepare similar memoranda for Owner and separate contractors if coordination of their Work is required.
- C. Administrative Procedures: Coordinate scheduling and timing of required administrative procedures with other construction activities to avoid conflicts and to ensure orderly progress of the Work. Such administrative activities include, but are not limited to, the following:
 - 1. Preparation of Contractor's construction schedule.
 - 2. Preparation of the schedule of values.
 - 3. Installation and removal of temporary facilities and controls.
 - 4. Delivery and processing of submittals.
 - 5. Progress meetings.
 - 6. Preinstallation conferences.
 - 7. Startup and adjustment of systems.

1.6 REQUESTS FOR INFORMATION (RFIs)

- A. General: Immediately on discovery of the need for additional information or interpretation of the Contract Documents, Contractor shall prepare and submit an RFI in the form specified.
 - Architect will return RFIs submitted to Architect by other entities controlled by Contractor with no response.
 - Coordinate and submit RFIs in a prompt manner so as to avoid delays in Contractor's work or work of subcontractors.
- B. Content of the RFI: Include a detailed, legible description of item needing information or interpretation and the following:
 - 1. Project name.
 - 2. Project number.
 - 3. Date.
 - 4. Name of Contractor.
 - 5. Name of Architect.
 - 6. RFI number, numbered sequentially.
 - 7. RFI subject
 - 8. Specification Section number and title and related paragraphs, as appropriate.
 - 9. Drawing number and detail references, as appropriate.
 - 10. Field dimensions and conditions, as appropriate.
 - 11. Contractor's suggested resolution. If Contractor's suggested resolution impacts the Contract Time or the Contract Sum, Contractor shall state impact in the RFI.
 - 12. Contractor's signature.
 - 13. Attachments: Include sketches, descriptions, measurements, photos, Product Data, Shop Drawings, coordination drawings, and other information necessary to fully describe items needing interpretation.
 - a. Include dimensions, thicknesses, structural grid references, and details of affected materials, assemblies, and attachments on attached sketches.
- C. RFI Forms: Form bound in Project Manual.
 - 1. Attachments shall be electronic files in Adobe Acrobat PDF format.
- D. Architect's Action: Architect will review each RFI, determine action required, and respond. Allow seven working days for Architect's response for each RFI. RFIs received by Architect after 1:00 p.m. will be considered as received the following working day.
 - 1. The following Contractor-generated RFIs will be returned without action:
 - a. Requests for approval of submittals.
 - b. Requests for approval of substitutions.
 - c. Requests for approval of Contractor's means and methods.

- d. Requests for coordination information already indicated in the Contract Documents.
- e. Requests for adjustments in the Contract Time or the Contract Sum.
- f. Requests for interpretation of Architect's actions on submittals.
- g. Incomplete RFIs or inaccurately prepared RFIs.
- 2. Architect's action may include a request for additional information, in which case Architect's time for response will date from time of receipt of additional information.
- 3. Architect's action on RFIs that may result in a change to the Contract Time or the Contract Sum may be eligible for Contractor to submit Change Proposal according to Section 012600 "Contract Modification Procedures."
 - a. If Contractor believes the RFI response warrants change in the Contract Time or the Contract Sum, notify Architect in writing within 10 days of receipt of the RFI response.
- E. RFI Log: Prepare, maintain, and submit a tabular log of RFIs organized by the RFI number. Submit log weekly. Include the following:
 - 1. Project name.
 - 2. Name and address of Contractor.
 - 3. Name and address of Architect.
 - 4. RFI number including RFIs that were returned without action or withdrawn.
 - 5. RFI description.
 - 6. Date the RFI was submitted.
 - 7. Date Architect's response was received.
- F. On receipt of Architect's action, update the RFI log and immediately distribute the RFI response to affected parties. Review response and notify Architect within seven days if Contractor disagrees with response.
 - 1. Identification of related Minor Change in the Work, Construction Change Directive, and Proposal Request, as appropriate.

1.7 PROJECT MEETINGS

- A. General: Schedule and conduct meetings and conferences at Project site unless otherwise indicated.
 - 1. Attendees: Inform participants and others involved, and individuals whose presence is required, of date and time of each meeting. Notify Owner and Architect of scheduled meeting dates and times.
 - 2. Agenda: Prepare the meeting agenda. Distribute the agenda to all invited attendees.
 - 3. Minutes: Entity responsible for conducting meeting will record significant discussions and agreements achieved. Distribute the meeting minutes to everyone concerned, including Owner and Architect, within three days of the meeting.
- B. Preconstruction Conference: Schedule and conduct a preconstruction conference before starting construction, at a time convenient to Owner and Architect, but no later than 15 days after execution of the Agreement.
 - 1. Conduct the conference to review responsibilities and personnel assignments.
 - 2. Attendees: Authorized representatives of Owner, Architect, and their consultants; Contractor and its superintendent; major subcontractors; suppliers; and other concerned parties shall attend the conference. Participants at the conference shall be familiar with Project and authorized to conclude matters relating to the Work.
 - 3. Agenda: Discuss items of significance that could affect progress, including the following:
 - Tentative construction schedule.
 - b. Phasing.
 - c. Critical work sequencing and long-lead items.
 - d. Designation of key personnel and their duties.
 - e. Lines of communications.
 - f. Procedures for processing field decisions and Change Orders.
 - g. Procedures for RFIs.
 - h. Procedures for testing and inspecting.

- i. Procedures for processing Applications for Payment.
- j. Distribution of the Contract Documents.
- k. Submittal procedures.
- 1. Preparation of record documents.
- m. Use of the premises and existing building.
- n. Work restrictions.
- o. Working hours.
- p. Owner's occupancy requirements.
- q. Responsibility for temporary facilities and controls.
- r. Procedures for moisture and mold control.
- s. Procedures for disruptions and shutdowns.
- t. Construction waste management and recycling.
- u. Parking availability.
- v. Office, work, and storage areas.
- w. Equipment deliveries and priorities.
- x. First aid.
- y. Security.

4.

- z. Progress cleaning.
- Minutes: Entity responsible for conducting meeting will record and distribute meeting minutes.
- C. Preinstallation Conferences: Conduct a preinstallation conference at Project site before each construction activity that requires coordination with other construction.
 - 1. Attendees: Installer and representatives of manufacturers and fabricators involved in or affected by the installation and its coordination or integration with other materials and installations that have preceded or will follow, shall attend the meeting. Advise Architect of scheduled meeting dates.
 - 2. Agenda: Review progress of other construction activities and preparations for the particular activity under consideration, including requirements for the following:
 - a. Contract Documents.
 - b. Options.
 - c. Related RFIs.
 - d. Related Change Orders.
 - e. Purchases.
 - f. Deliveries.
 - g. Submittals.
 - h. Review of mockups.
 - i. Possible conflicts.
 - j. Compatibility requirements.
 - k. Time schedules.
 - 1. Weather limitations.
 - m. Manufacturer's written instructions.
 - n. Warranty requirements.
 - o. Compatibility of materials.
 - p. Acceptability of substrates.
 - q. Temporary facilities and controls.
 - r. Space and access limitations.
 - s. Regulations of authorities having jurisdiction.
 - t. Testing and inspecting requirements.
 - u. Installation procedures.
 - v. Coordination with other work.
 - w. Required performance results.
 - x. Protection of adjacent work.
 - y. Protection of construction and personnel.
 - 3. Record significant conference discussions, agreements, and disagreements, including required corrective measures and actions.

- 4. Reporting: Distribute minutes of the meeting to each party present and to other parties requiring information.
- 5. Do not proceed with installation if the conference cannot be successfully concluded. Initiate whatever actions are necessary to resolve impediments to performance of the Work and reconvene the conference at earliest feasible date.
- D. Project Closeout Conference: Schedule and conduct a project closeout conference, at a time convenient to Owner and Architect, but no later than 90 days prior to the scheduled date of Substantial Completion.
 - 1. Conduct the conference to review requirements and responsibilities related to Project closeout.
 - 2. Attendees: Authorized representatives of Owner, Architect, and their consultants; Contractor and its superintendent; major subcontractors; suppliers; and other concerned parties shall attend the meeting. Participants at the meeting shall be familiar with Project and authorized to conclude matters relating to the Work.
 - 3. Agenda: Discuss items of significance that could affect or delay Project closeout, including the following:
 - a. Preparation of record documents.
 - b. Procedures required prior to inspection for Substantial Completion and for final inspection for acceptance.
 - c. Submittal of written warranties.
 - d. Requirements for preparing operations and maintenance data.
 - e. Requirements for delivery of material samples, attic stock, and spare parts.
 - f. Requirements for demonstration and training.
 - g. Preparation of Contractor's punch list.
 - h. Procedures for processing Applications for Payment at Substantial Completion and for final payment.
 - i. Submittal procedures.
 - j. Coordination of separate contracts.
 - k. Owner's partial occupancy requirements.
 - 1. Installation of Owner's furniture, fixtures, and equipment.
 - m. Responsibility for removing temporary facilities and controls.
 - 4. Minutes: Entity conducting meeting will record and distribute meeting minutes.
- E. Progress Meetings: Conduct progress meetings at biweekly intervals.
 - 1. Coordinate dates of meetings with preparation of payment requests.
 - 2. Attendees: In addition to representatives of Owner and Architect, each contractor, subcontractor, supplier, and other entity concerned with current progress or involved in planning, coordination, or performance of future activities shall be represented at these meetings. All participants at the meeting shall be familiar with Project and authorized to conclude matters relating to the Work.
 - 3. Agenda: Review and correct or approve minutes of previous progress meeting. Review other items of significance that could affect progress. Include topics for discussion as appropriate to status of Project.
 - a. Contractor's Construction Schedule: Review progress since the last meeting. Determine whether each activity is on time, ahead of schedule, or behind schedule, in relation to Contractor's construction schedule. Determine how construction behind schedule will be expedited; secure commitments from parties involved to do so. Discuss whether schedule revisions are required to ensure that current and subsequent activities will be completed within the Contract Time.
 - 1) Review schedule for next period.
 - b. Review present and future needs of each entity present, including the following:
 - 1) Interface requirements.
 - 2) Sequence of operations.
 - 3) Status of submittals.
 - 4) Deliveries.
 - 5) Off-site fabrication.
 - 6) Access.
 - 7) Site utilization.

- 8) Temporary facilities and controls.
- 9) Progress cleaning.
- 10) Quality and work standards.
- 11) Status of correction of deficient items.
- 12) Field observations.
- 13) Status of RFIs.
- 14) Status of proposal requests.
- 15) Pending changes.
- 16) Status of Change Orders.
- 17) Pending claims and disputes.
- 18) Documentation of information for payment requests.
- 4. Minutes: Entity responsible for conducting the meeting will record and distribute the meeting minutes to each party present and to parties requiring information.
 - a. Schedule Updating: Revise Contractor's construction schedule after each progress meeting where revisions to the schedule have been made or recognized. Issue revised schedule concurrently with the report of each meeting.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 013100

SECTION 013300 - SUBMITTAL PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.
- B. Section 007300 "Supplementary Conditions to Owner Contractor Agreement" for information regarding web-based electronic delivery and record-keeping of submittals.

1.2 SUMMARY

- A. The Architect will only review submittals specifically required by the individual specification sections.
- B. Section includes requirements for the submittal schedule and administrative and procedural requirements for submitting Shop Drawings, Product Data, Samples, and other submittals.

1.3 DEFINITIONS

- A. Action Submittals: Written and graphic information and physical samples that require Architect's responsive action. Action submittals are those submittals indicated in individual Specification Sections as "action submittals."
- B. Informational Submittals: Written and graphic information and physical samples that do not require Architect's responsive action. Submittals may be rejected for not complying with requirements. Informational submittals are those submittals indicated in individual Specification Sections as "informational submittals."
- C. File Transfer Protocol (FTP): Communications protocol that enables transfer of files to and from another computer over a network and that serves as the basis for standard Internet protocols. An FTP site is a portion of a network located outside of network firewalls within which internal and external users are able to access files.
- D. Portable Document Format (PDF): An open standard file format licensed by Adobe Systems used for representing documents in a device-independent and display resolution-independent fixed-layout document format.

1.4 ACTION SUBMITTALS

- A. Submittal Schedule: Submit a schedule of submittals, arranged in chronological order by dates required by construction schedule. Include time required for review, ordering, manufacturing, fabrication, and delivery when establishing dates. Include additional time required for making corrections or revisions to submittals noted by Architect and additional time for handling and reviewing submittals required by those corrections.
 - Coordinate submittal schedule with list of subcontracts, the schedule of values, and Contractor's construction schedule.
 - 2. Final Submittal: Submit concurrently with the first complete submittal of Contractor's construction schedule.
 - Submit revised submittal schedule to reflect changes in current status and timing for submittals.
 - 3. Format: Arrange the following information in a tabular format:
 - a. Scheduled date for first submittal.

- b. Specification Section number and title.
- c. Submittal category: Action; informational.
- d. Name of subcontractor.
- e. Description of the Work covered.

1.5 SUBMITTAL ADMINISTRATIVE REQUIREMENTS

- A. Architect's Digital Data Files: Electronic digital data files of the Contract Drawings will be provided by Architect for Contractor's use in preparing submittals upon the request of the Contractor and payment of cost of reproduction of digital data documents.
 - 1. Architect's digital data files shall be limited to files as they currently exist, with no further modifications made to reflect current contract conditions.
 - 2. Digital data files shall be limited to current system format, digital data entity attributes and layering.
 - 3. Contractor's use shall be restricted to drawings related to this Project. No use or adaptation for other Projects shall be permitted.
 - 4. Architect assumes no liability for accuracy of content of subject files, or for loss of profits, or indirect, incidental, special, consequential, or other damages of any kind or nature caused by the use of electronic data.
- B. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.
 - 1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
 - 2. Submit all submittal items required for each Specification Section concurrently unless partial submittals for portions of the Work are indicated on approved submittal schedule.
 - 3. Submit action submittals and informational submittals required by the same Specification Section as separate packages under separate transmittals.
 - 4. Coordinate transmittal of different types of submittals for related parts of the Work so processing will not be delayed because of need to review submittals concurrently for coordination.
 - a. Architect reserves the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received.
- C. Processing Time: Allow time for submittal review, including time for resubmittals, as follows. Time for review shall commence on Architect's receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.
 - 1. Initial Review: Allow 15 days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. Architect will advise Contractor when a submittal being processed must be delayed for coordination.
 - 2. Intermediate Review: If intermediate submittal is necessary, process it in same manner as initial submittal.
 - 3. Resubmittal Review: Allow 15 days for review of each resubmittal.
- D. Electronic Submittals: Identify and incorporate information in each electronic submittal file as follows:
 - 1. Assemble complete submittal package into a single indexed file incorporating submittal requirements of a single Specification Section and transmittal form with links enabling navigation to each item.
 - 2. Name file with submittal number or other unique identifier, including revision identifier.
 - a. File name shall use project identifier and Specification Section number followed by a decimal point and then a sequential number (e.g., LNHS-061000.01). Resubmittals shall include an alphabetic suffix after another decimal point (e.g., LNHS-061000.01.A).
 - 3. Provide means for insertion to permanently record Contractor's review and approval markings and action taken by Architect.

- 4. Transmittal Form for Electronic Submittals: Use facsimile of sample form included in Project Manual, Section 006000, Project Forms acceptable to Owner, containing the following information:
 - a. Project name.
 - b. Date.
 - c. Name and address of Architect.
 - d. Name of Contractor.
 - e. Name of firm or entity that prepared submittal.
 - f. Names of subcontractor, manufacturer, and supplier.
 - g. Category and type of submittal.
 - h. Submittal purpose and description.
 - i. Specification Section number and title.
 - j. Specification paragraph number or drawing designation and generic name for each of multiple items.
 - k. Drawing number and detail references, as appropriate.
 - 1. Location(s) where product is to be installed, as appropriate.
 - m. Related physical samples submitted directly.
 - n. Indication of full or partial submittal.
 - o. Transmittal number.
 - p. Submittal and transmittal distribution record.
 - q. Other necessary identification of product, assembly, etc., included in submittal.
 - r. Remarks
- 5. Metadata: Include the following information as keywords in the electronic submittal file metadata:
 - a. Project name
 - b. Number and title of appropriate Specification Section.
 - c. Manufacturer name.
 - d. Product name.
- E. Options: Identify options requiring selection by Architect.
- F. Deviations and Additional Information: On an attached separate sheet, prepared on Contractor's letterhead, record relevant information, requests for data, revisions other than those requested by Architect on previous submittals, and deviations from requirements in the Contract Documents, including minor variations and limitations. Include same identification information as related submittal.
- G. Resubmittals: Make resubmittals in same form and number of copies as initial submittal.
 - 1. Note date and content of previous submittal.
 - 2. Note date and content of revision in label or title block and clearly indicate extent of revision.
 - 3. Resubmit submittals until they are marked with approval notation from Architect's action stamp.
- H. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, authorities having jurisdiction, and others as necessary for performance of construction activities.
- I. Use for Construction: Retain complete copies of submittals on Project site. Use only final action submittals that are accompanied with Transmittal Form that is either marked "No Exceptions Noted" or "Exceptions Noted (do not resubmit)" from Architect.

PART 2 - PRODUCTS

2.1 SUBMITTAL PROCEDURES

A. General Submittal Procedure Requirements: Prepare and submit submittals required by individual Specification Sections. Types of submittals are indicated in individual Specification Sections.

- 1. Post electronic submittals as PDF electronic files directly to Submittal Exchange web site specifically established for Project.
 - a. Architect will return annotated file. Annotate and retain one copy of file as an electronic Project record document file.
- 2. Certificates and Certifications Submittals: Provide a statement that includes signature of entity responsible for preparing certification. Certificates and certifications shall be signed by an officer or other individual authorized to sign documents on behalf of that entity.
- B. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment.
 - 1. If information must be specially prepared for submittal because standard published data are not suitable or available for use, submit as Shop Drawings, not as Product Data.
 - 2. Mark each copy of each submittal to show which products and options are applicable.
 - 3. Include the following information, as applicable:
 - a. Manufacturer's catalog cuts.
 - b. Manufacturer's product specifications.
 - c. Standard color charts.
 - d. Statement of compliance with specified referenced standards.
 - e. Testing by recognized testing agency.
 - f. Application of testing agency labels and seals.
 - g. Notation of coordination requirements.
 - h. Availability and delivery time information.
 - 4. For equipment, include the following in addition to the above, as applicable:
 - a. Wiring diagrams showing factory-installed wiring.
 - b. Printed performance curves.
 - c. Operational range diagrams.
 - d. Clearances required to other construction, if not indicated on accompanying Shop Drawings.
 - 5. Submit Product Data before or concurrent with Samples.
 - 6. Submit Product Data in the following format:
 - a. PDF electronic file.
- C. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data.
 - 1. Preparation: Fully illustrate requirements in the Contract Documents. Include the following information, as applicable:
 - a. Identification of products.
 - b. Schedules.
 - c. Compliance with specified standards.
 - d. Notation of coordination requirements.
 - e. Notation of dimensions established by field measurement.
 - f. Relationship and attachment to adjoining construction clearly indicated.
 - g. Seal and signature of professional engineer if specified.
 - 2. Sheet Size: Except for templates, patterns, and similar full-size drawings, submit Shop Drawings on sheets at least 8-1/2 by 11 inches (215 by 280 mm), but no larger than 30 by 42 inches (750 by 1067 mm).
 - 3. Submit Shop Drawings in the following format:
 - a. PDF electronic file.
- D. Samples: Submit Samples for review of kind, color, pattern, and texture for a check of these characteristics with other elements and for a comparison of these characteristics between submittal and actual component as delivered and installed.
 - 1. Transmit Samples that contain multiple, related components such as accessories together in one submittal package.
 - 2. Identification: Attach label on unexposed side of Samples that includes the following:
 - a. Generic description of Sample.

- b. Product name and name of manufacturer.
- c. Sample source.
- d. Number of applicable Specification Section and applicable paragraph within the Section (e.g. 061000, 2.1 A.1).
- e. Specification paragraph number and generic name of each item.
- 3. For projects where electronic submittals are required, provide corresponding electronic submittal of Sample transmittal, digital image file illustrating Sample characteristics, and identification information for record.
- 4. Disposition: Maintain sets of approved Samples at Project site, available for quality-control comparisons throughout the course of construction activity. Sample sets will be used to determine final acceptance of construction associated with samples.
 - a. Samples that may be incorporated into the Work are indicated in individual Specification Sections. Such Samples must be in an undamaged condition at time of use.
 - b. Samples not incorporated into the Work, or otherwise designated as Owner's property, are the property of Contractor.
- 5. Samples for Verification: Submit full-size units or Samples of size indicated, prepared from same material to be used for the Work, cured and finished in manner specified, and physically identical with material or product proposed for use, and that show full range of color and texture variations expected. Samples include, but are not limited to, the following: partial sections of manufactured or fabricated components; small cuts or containers of materials; complete units of repetitively used materials; swatches showing color, texture, and pattern; color range sets; and components used for independent testing and inspection.
 - a. Number of Samples: Submit three sets of Samples. Architect will retain one Sample set; remainder will be returned. Mark up and retain one returned Sample set as a project record sample.
 - Submit a single Sample where assembly details, workmanship, fabrication techniques, connections, operation, and other similar characteristics are to be demonstrated.
 - 2) If variation in color, pattern, texture, or other characteristic is inherent in material or product represented by a Sample, submit at least three sets of paired units that show approximate limits of variations.
- E. Product Schedule: As required in individual Specification Sections and/or listed hereinafter, prepare a written summary indicating types of products required for the Work and their intended location. Include the following information in tabular form:
 - 1. Type of product. Include unique identifier for each product indicated in the Contract Documents or assigned by Contractor if none is indicated.
 - 2. Manufacturer and product name, and model number if applicable.
 - 3. Number and name of room or space.
 - 4. Location within room or space.
 - 5. Submit product schedule in the following format:
 - a. PDF electronic file.
- F. Closeout Submittals and Maintenance Material Submittals: Comply with requirements specified in Section 017700 "Closeout Procedures."
- G. Maintenance Data: Comply with requirements specified in Section 017823 "Operation and Maintenance Data."
- H. Qualification Data: Prepare written information that demonstrates capabilities and experience of firm or person. Include lists of completed projects with project names and addresses, contact information of architects and owners, and other information specified.
- I. Welding Certificates: Prepare written certification that welding procedures and personnel comply with requirements in the Contract Documents. Submit record of Welding Procedure Specification and Procedure Qualification Record on AWS forms. Include names of firms and personnel certified.

- J. Installer Certificates: Submit written statements on manufacturer's letterhead certifying that Installer complies with requirements in the Contract Documents and, where required, is authorized by manufacturer for this specific Project.
- K. Manufacturer Certificates: Submit written statements on manufacturer's letterhead certifying that manufacturer complies with requirements in the Contract Documents. Include evidence of manufacturing experience where required.
- L. Product Certificates: Submit written statements on manufacturer's letterhead certifying that product complies with requirements in the Contract Documents.
- M. Material Certificates: Submit written statements on manufacturer's letterhead certifying that material complies with requirements in the Contract Documents.
- N. Material Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting test results of material for compliance with requirements in the Contract Documents.
- O. Product Test Reports: Submit written reports indicating that current product produced by manufacturer complies with requirements in the Contract Documents. Base reports on evaluation of tests performed by manufacturer and witnessed by a qualified testing agency, or on comprehensive tests performed by a qualified testing agency.
- P. Research Reports: Submit written evidence, from a model code organization acceptable to authorities having jurisdiction, that product complies with building code in effect for Project. Include the following information:
 - 1. Name of evaluation organization.
 - 2. Date of evaluation.
 - 3. Time period when report is in effect.
 - 4. Product and manufacturers' names.
 - 5. Description of product.
 - 6. Test procedures and results.
 - 7. Limitations of use.
- Q. Preconstruction Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of tests performed before installation of product, for compliance with performance requirements in the Contract Documents.
- R. Compatibility Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of compatibility tests performed before installation of product. Include written recommendations for primers and substrate preparation needed for adhesion.
- S. Field Test Reports: Submit written reports indicating and interpreting results of field tests performed either during installation of product or after product is installed in its final location, for compliance with requirements in the Contract Documents.
- T. Design Data: Prepare and submit written and graphic information, including, but not limited to, performance and design criteria, list of applicable codes and regulations, and calculations. Include list of assumptions and other performance and design criteria and a summary of loads. Include load diagrams if applicable. Provide name and version of software, if any, used for calculations. Include page numbers.

2.2 DELEGATED-DESIGN SERVICES

- A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.
 - 1. If criteria indicated are not sufficient to perform services or certification required, submit a written request for additional information to Architect.
- B. Delegated-Design Services Certification: In addition to Shop Drawings, Product Data, and other required submittals, submit a statement, signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional.
 - 1. Indicate that products and systems comply with performance and design criteria in the Contract Documents. Include list of codes, loads, and other factors used in performing these services.

PART 3 - EXECUTION

3.1 CONTRACTOR'S REVIEW

- A. Action and Informational Submittals: Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Architect.
- B. Project Closeout and Maintenance Material Submittals: See requirements in Section 017700 "Closeout Procedures."
- C. Approval Stamp: Stamp each submittal with a uniform, approval stamp. Include Project name and location, submittal number, Specification Section title and number, name of reviewer, date of Contractor's approval, and statement certifying that submittal has been reviewed, checked, and approved for compliance with the Contract Documents. Approval stamp actions and statements shall conform to Transmittal Form actions and statements.

3.2 ARCHITECT'S ACTION

- A. Action Submittals: Architect will review each submittal that is stamped and signed by the Contractor, make marks to indicate corrections or revisions required, and return it. Architect will indicate on the accompanying Transmittal Form the appropriate action, as follows:
 - 1. A. No Exceptions Noted
 - 2. B. Exceptions Noted (Do not resubmit)
 - 3. C. Revise and Resubmit (See Notes)
 - 4. D. Rejected
 - 5. E. Not Required Returned Without Action
- B. Informational Submittals: Architect will review each submittal and will return it to indicate it does or does not comply with requirements. Architect will forward each submittal to Contractor only, to be distributed by Contractor as is appropriate .
- C. Partial submittals prepared for a portion of the Work will be reviewed when use of partial submittals has received prior approval from Architect.
- D. Incomplete submittals are unacceptable, will be considered nonresponsive, and will be returned for resubmittal without review.
- E. Submittals not required by the Contract Documents may be returned by the Architect without action.

END OF SECTION 013300

SECTION 017700 - CLOSEOUT PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. The Architect will review closeout procedural documents only when directed by the Owner.
- B. Section includes administrative and procedural requirements for contract closeout, including, but not limited to, the following:
 - 1. Substantial Completion procedures.
 - 2. Final completion procedures.
 - 3. Warranties.
 - 4. Final cleaning.
 - 5. Repair of the Work.

C. Related Requirements:

- 1. Section 017823 "Operation and Maintenance Data" for operation and maintenance manual requirements.
- 2. Section 017839 "Project Record Documents" for submitting record Drawings, record Specifications, and record Product Data.

1.3 ACTION SUBMITTALS

- A. Contractor's List of Incomplete Items: Initial submittal at Substantial Completion.
- B. Certified List of Incomplete Items: Final submittal at Final Completion.

1.4 CLOSEOUT SUBMITTALS

- A. Certificates of Release: From authorities having jurisdiction.
- B. Certificate of Insurance: For continuing coverage.
- C. Field Report: For pest control inspection.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Schedule of Maintenance Material Items: For maintenance material submittal items specified in other Sections.

1.6 SUBSTANTIAL COMPLETION PROCEDURES

A. Contractor's List of Incomplete Items: Prepare and submit a list of items to be completed and corrected (Contractor's punch list), indicating the value of each item on the list and reasons why the Work is incomplete.

- B. Submittals Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.
 - 1. Certificates of Release: Obtain and submit releases from authorities having jurisdiction permitting Owner unrestricted use of the Work and access to services and utilities. Include occupancy permits, operating certificates, and similar releases.
 - 2. Submit closeout submittals specified in other Division 01 Sections, including project record documents, operation and maintenance manuals, final completion construction photographic documentation, damage or settlement surveys, property surveys, and similar final record information.
 - 3. Submit closeout submittals specified in individual Sections, including specific warranties, workmanship bonds, maintenance service agreements, final certifications, and similar documents.
 - 4. Submit maintenance material submittals specified in individual Sections, including tools, spare parts, extra materials, and similar items, and deliver to location designated by Owner. Label with manufacturer's name and model number where applicable.
 - 5. Submit test/adjust/balance records.
- C. Procedures Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.
 - 1. Advise Owner of pending insurance changeover requirements.
 - 2. Make final changeover of permanent locks and deliver keys to Owner. Advise Owner's personnel of changeover in security provisions.
 - 3. Complete startup and testing of systems and equipment.
 - 4. Perform preventive maintenance on equipment used prior to Substantial Completion.
 - 5. Instruct Owner's personnel in operation, adjustment, and maintenance of products, equipment, and systems.
 - 6. Advise Owner of changeover in heat and other utilities.
 - 7. Terminate and remove temporary facilities from Project site, along with mockups, construction tools, and similar elements.
 - 8. Complete final cleaning requirements, including touchup painting.
 - 9. Touch up and otherwise repair and restore marred exposed finishes to eliminate visual defects.

1.7 FINAL COMPLETION PROCEDURES

- A. Submittals Prior to Final Completion: Before requesting final inspection for determining final completion, complete the following:
 - 1. Submit a final Application for Payment according to Section 012900 "Payment Procedures."
 - Certified List of Incomplete Items: Submit certified copy of Owner's and/or Architect's Substantial Completion inspection list of items to be completed or corrected (punch list), endorsed and dated by Owner and/or Architect. Certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance.
 - 3. Certificate of Insurance: Submit evidence of final, continuing insurance coverage complying with insurance requirements.

1.8 LIST OF INCOMPLETE ITEMS (PUNCH LIST)

- A. Organization of List: Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by Contractor that are outside the limits of construction.
 - 1. Organize list of spaces in sequential order, .
 - 2. Organize items applying to each space by major element, including categories for ceiling, individual walls, floors, equipment, and building systems.
 - 3. Include the following information at the top of each page:
 - a. Project name.
 - b. Date.

- c. Name of Architect.
- d. Name of Contractor.
- e. Page number.
- 4. Submit list of incomplete items in the following format:
 - MS Excel electronic file.

1.9 SUBMITTAL OF PROJECT WARRANTIES

- A. Time of Submittal: Submit written warranties for designated portions of the Work where commencement of warranties other than date of Substantial Completion is indicated, or when delay in submittal of warranties might limit Owner's rights under warranty.
 - Identify date of warranty commencement and warranty duration clearly on written warranty document.
- B. Organize warranty documents into an orderly sequence based on the table of contents of Project Manual.
 - 1. Warranty Electronic File: Scan warranties and bonds and assemble complete warranty and bond submittal package into a single indexed electronic PDF file with links enabling navigation to each item. Provide bookmarked table of contents at beginning of document.
- C. Provide additional copies of each warranty to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.

PART 3 - EXECUTION

3.1 FINAL CLEANING

- A. General: Perform final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations.
- B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions.
 - 1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a designated portion of Project:
 - a. Clean Project site, yard, and grounds, in areas disturbed by construction activities, including landscape development areas, of rubbish, waste material, litter, and other foreign substances.
 - b. Sweep paved areas broom clean. Remove petrochemical spills, stains, and other foreign deposits.
 - c. Rake grounds that are neither planted nor paved to a smooth, even-textured surface.
 - d. Remove tools, construction equipment, machinery, and surplus material from Project site.
 - e. Remove snow and ice to provide safe access to building.
 - f. Clean exposed exterior and interior hard-surfaced finishes to a dirt-free condition, free of stains, films, and similar foreign substances. Avoid disturbing natural weathering of exterior surfaces. Restore reflective surfaces to their original condition.
 - g. Remove debris and surface dust from limited access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces.
 - h. Sweep concrete floors broom clean in unoccupied spaces.

- i. Vacuum carpet and similar soft surfaces, removing debris and excess nap; clean according to manufacturer's recommendations if visible soil or stains remain.
- j. Clean transparent materials, including mirrors and glass in doors and windows. Remove glazing compounds and other noticeable, vision-obscuring materials. Polish mirrors and glass, taking care not to scratch surfaces.
- k. Remove labels that are not permanent.
- 1. Wipe surfaces of mechanical and electrical equipment and similar equipment. Remove excess lubrication, paint and mortar droppings, and other foreign substances.
- m. Clean plumbing fixtures to a sanitary condition, free of stains, including stains resulting from water exposure.
- n. Replace disposable air filters and clean permanent air filters. Clean exposed surfaces of diffusers, registers, and grills.
- o. Clean ducts, blowers, and coils if units were operated and where inside of ducts were exposed during construction or that display contamination with particulate matter on inspection.
- p. Clean light fixtures, lamps, globes, and reflectors to function with full efficiency.
- q. Leave Project clean and ready for occupancy.

3.2 REPAIR OF THE WORK

- A. Complete repair and restoration operations before requesting inspection for determination of Substantial Completion.
- B. Repair or remove and replace defective construction. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment. Where damaged or worn items cannot be repaired or restored, provide replacements. Remove and replace operating components that cannot be repaired. Restore damaged construction and permanent facilities used during construction to specified condition.
 - 1. Remove and replace chipped, scratched, and broken glass, reflective surfaces, and other damaged transparent materials.
 - 2. Touch up and otherwise repair and restore marred or exposed finishes and surfaces. Replace finishes and surfaces that that already show evidence of repair or restoration.
 - a. Do not paint over "UL" and other required labels and identification, including mechanical and electrical nameplates. Remove paint applied to required labels and identification.
 - 3. Replace parts subject to operating conditions during construction that may impede operation or reduce longevity.
 - 4. Replace burned-out bulbs, bulbs noticeably dimmed by hours of use, and defective and noisy starters in fluorescent and mercury vapor fixtures to comply with requirements for new fixtures.

END OF SECTION 017700

SECTION 017823 - OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. The Architect will review Operations and Maintenance submittals only when directed by the Owner.
- B. Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:
 - 1. Operation and maintenance documentation directory.
 - 2. Operation manuals for systems, subsystems, and equipment.
 - 3. Product maintenance manuals.
 - 4. Systems and equipment maintenance manuals.

C. Related Requirements:

 Section 013300 "Submittal Procedures" for submitting copies of submittals for operation and maintenance manuals.

1.3 DEFINITIONS

- A. System: An organized collection of parts, equipment, or subsystems united by regular interaction.
- B. Subsystem: A portion of a system with characteristics similar to a system.

1.4 CLOSEOUT SUBMITTALS

- A. Manual Content: Operations and maintenance manual content is specified in individual Specification Sections to be reviewed at the time of Section submittals. Submit reviewed manual content formatted and organized as required by this Section.
 - 1. Architect will comment on whether content of operations and maintenance submittals are acceptable.
 - Where applicable, clarify and update reviewed manual content to correspond to revisions and field conditions.
- B. Format: Submit operations and maintenance manuals in the following format:
 - 1. PDF electronic file. Assemble each manual into a composite electronically indexed file. Submit on digital media acceptable to Architect.
 - a. Name each indexed document file in composite electronic index with applicable item name. Include a complete electronically linked operation and maintenance directory.
 - b. Enable inserted reviewer comments on draft submittals.
 - 2. Three paper copies. Include a complete operation and maintenance directory. Enclose title pages and directories in clear plastic sleeves.
- C. Manual Submittal: Submit each manual in final form prior to requesting inspection for Substantial Completion and at least 15 days before commencing demonstration and training. Architect will return copy with comments.

1. Correct or revise each manual to comply with Architect's comments. Submit copies of each corrected manual within 15 days of receipt of Architect's comments and prior to commencing demonstration and training.

PART 2 - PRODUCTS

2.1 OPERATION AND MAINTENANCE DOCUMENTATION DIRECTORY

- A. Directory: Prepare a single, comprehensive directory of emergency, operation, and maintenance data and materials, listing items and their location to facilitate ready access to desired information. Include a section in the directory for each of the following:
 - 1. List of documents.
 - 2. List of systems.
 - 3. List of equipment.
 - 4. Table of contents.
- B. List of Systems and Subsystems: List systems alphabetically. Include references to operation and maintenance manuals that contain information about each system.
- C. List of Equipment: List equipment for each system, organized alphabetically by system. For pieces of equipment not part of system, list alphabetically in separate list.
- D. Tables of Contents: Include a table of contents for each emergency, operation, and maintenance manual.
- E. Identification: In the documentation directory and in each operation and maintenance manual, identify each system, subsystem, and piece of equipment with same designation used in the Contract Documents. If no designation exists, assign a designation according to ASHRAE Guideline 4, "Preparation of Operating and Maintenance Documentation for Building Systems."

2.2 REQUIREMENTS FOR OPERATION AND MAINTENANCE MANUALS

- A. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:
 - 1. Title page.
 - 2. Table of contents.
 - 3. Manual contents.
- B. Title Page: Include the following information:
 - 1. Subject matter included in manual.
 - 2. Name and address of Project.
 - 3. Name and address of Owner.
 - 4. Date of submittal.
 - 5. Name and contact information for Contractor.
 - 6. Name and contact information for Architect.
 - 7. Name and contact information for Commissioning Authority.
 - 8. Names and contact information for major consultants to the Architect that designed the systems contained in the manuals.
 - 9. Cross-reference to related systems in other operation and maintenance manuals.
- C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.
 - 1. If operation or maintenance documentation requires more than one volume to accommodate data, include comprehensive table of contents for all volumes in each volume of the set.

- D. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.
- E. Manuals, Electronic Files: Submit manuals in the form of a multiple file composite electronic PDF file for each manual type required.
 - 1. Electronic Files: Use electronic files prepared by manufacturer where available. Where scanning of paper documents is required, configure scanned file for minimum readable file size.
 - 2. File Names and Bookmarks: Enable bookmarking of individual documents based on file names. Name document files to correspond to system, subsystem, and equipment names used in manual directory and table of contents. Group documents for each system and subsystem into individual composite bookmarked files, then create composite manual, so that resulting bookmarks reflect the system, subsystem, and equipment names in a readily navigated file tree. Configure electronic manual to display bookmark panel on opening file.
- F. Manuals, Paper Copy: Submit manuals in the form of hard copy, bound and labeled volumes.
 - 1. Binders: Heavy-duty, three-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch (215-by-280-mm) paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.
 - a. If two or more binders are necessary to accommodate data of a system, organize data in each binder into groupings by subsystem and related components. Cross-reference other binders if necessary to provide essential information for proper operation or maintenance of equipment or system.
 - b. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name, and subject matter of contents. Indicate volume number for multiple-volume sets.
 - 2. Dividers: Heavy-paper dividers with plastic-covered tabs for each section of the manual. Mark each tab to indicate contents. Include typed list of products and major components of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual.
 - 3. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software storage media for computerized electronic equipment.
 - 4. Supplementary Text: Prepared on 8-1/2-by-11-inch (215-by-280-mm) white bond paper.
 - 5. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.
 - If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.
 - b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

2.3 OPERATION MANUALS

- A. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:
 - 1. System, subsystem, and equipment descriptions. Use designations for systems and equipment indicated on Contract Documents.
 - 2. Performance and design criteria if Contractor has delegated design responsibility.
 - 3. Operating standards.
 - 4. Operating procedures.
 - 5. Operating logs.
 - 6. Wiring diagrams.
 - 7. Control diagrams.
 - 8. Piped system diagrams.
 - Precautions against improper use.
 - 10. License requirements including inspection and renewal dates.

- B. Descriptions: Include the following:
 - 1. Product name and model number. Use designations for products indicated on Contract Documents.
 - 2. Manufacturer's name.
 - 3. Equipment identification with serial number of each component.
 - 4. Equipment function.
 - 5. Operating characteristics.
 - 6. Limiting conditions.
 - 7. Performance curves.
 - 8. Engineering data and tests.
 - 9. Complete nomenclature and number of replacement parts.
- C. Operating Procedures: Include the following, as applicable:
 - 1. Startup procedures.
 - 2. Equipment or system break-in procedures.
 - 3. Routine and normal operating instructions.
 - 4. Regulation and control procedures.
 - 5. Instructions on stopping.
 - 6. Normal shutdown instructions.
 - 7. Seasonal and weekend operating instructions.
 - 8. Required sequences for electric or electronic systems.
 - 9. Special operating instructions and procedures.
- D. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.
- E. Piped Systems: Diagram piping as installed, and identify color-coding where required for identification.

2.4 PRODUCT MAINTENANCE MANUALS

- A. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.
- B. Source Information: List each product included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.
- C. Product Information: Include the following, as applicable:
 - 1. Product name and model number.
 - 2. Manufacturer's name.
 - 3. Color, pattern, and texture.
 - 4. Material and chemical composition.
 - 5. Reordering information for specially manufactured products.
- D. Maintenance Procedures: Include manufacturer's written recommendations and the following:
 - 1. Inspection procedures.
 - 2. Types of cleaning agents to be used and methods of cleaning.
 - 3. List of cleaning agents and methods of cleaning detrimental to product.
 - 4. Schedule for routine cleaning and maintenance.
 - 5. Repair instructions.
- E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.

- F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 - 1. Include procedures to follow and required notifications for warranty claims.

2.5 SYSTEMS AND EQUIPMENT MAINTENANCE MANUALS

- A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.
- B. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.
- C. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including the following information for each component part or piece of equipment:
 - 1. Standard maintenance instructions and bulletins.
 - 2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
 - 3. Identification and nomenclature of parts and components.
 - 4. List of items recommended to be stocked as spare parts.
- D. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:
 - 1. Test and inspection instructions.
 - 2. Troubleshooting guide.
 - 3. Precautions against improper maintenance.
 - 4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - 5. Aligning, adjusting, and checking instructions.
 - 6. Demonstration and training video recording, if available.
- E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.
 - 1. Scheduled Maintenance and Service: Tabulate actions for daily, weekly, monthly, quarterly, semiannual, and annual frequencies.
 - 2. Maintenance and Service Record: Include manufacturers' forms for recording maintenance.
- F. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.
- G. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 - 1. Include procedures to follow and required notifications for warranty claims.

PART 3 - EXECUTION

3.1 MANUAL PREPARATION

A. Operation and Maintenance Documentation Directory: Prepare a separate manual that provides an organized reference to emergency, operation, and maintenance manuals.

- B. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.
- C. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.
 - 1. Engage a factory-authorized service representative to assemble and prepare information for each system, subsystem, and piece of equipment not part of a system.
 - 2. Prepare a separate manual for each system and subsystem, in the form of an instructional manual for use by Owner's operating personnel.
- D. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.
 - 1. Prepare supplementary text if manufacturers' standard printed data are not available and where the information is necessary for proper operation and maintenance of equipment or systems.
- E. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in record Drawings to ensure correct illustration of completed installation.
 - 1. Do not use original project record documents as part of operation and maintenance manuals.
- F. Comply with Section 017700 "Closeout Procedures" for schedule for submitting operation and maintenance documentation.

END OF SECTION 017823

SECTION 017839 - PROJECT RECORD DOCUMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for project record documents, including the following:
 - 1. Record Drawings.
 - 2. Record Specifications.
 - 3. Record Product Data.
 - 4. Miscellaneous record submittals.

B. Related Requirements:

- 1. Section 017700 "Closeout Procedures" for general closeout procedures.
- 2. Section 017823 "Operation and Maintenance Data" for operation and maintenance manual requirements.

1.3 CLOSEOUT SUBMITTALS

- A. Certification: Submit Contractor's letter of certification stating that project record documents are accurate and represent completed field conditions.
- B. Record Drawings: Comply with the following:
 - 1. Number of Copies: Submit one set of marked-up record prints.
- C. Submit all record documents and Contractor's letters of certification under a transmittal letter containing date, project title and number, Contractor's name and address, title and number of each record document and signature of Contractor.

PART 2 - PRODUCTS

2.1 RECORD DRAWINGS

- A. Record Prints: Maintain one consolidated, full set of marked-up paper copies of the Contract Drawings and Shop Drawings, incorporating new and revised drawings as modifications are issued.
 - 1. Preparation: Mark record prints to show the actual installation where installation varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to provide information for preparation of, or to prepare the corresponding marked-up record prints.
 - a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later.
 - b. Accurately record information in an acceptable drawing technique.
 - c. Record data as soon as possible after obtaining it.
 - d. Record and check the markup before enclosing concealed installations.
 - e. Cross-reference record prints to corresponding archive photographic documentation.
 - 2. Content: Types of items requiring marking include, but are not limited to, the following:
 - a. Dimensional changes to Drawings.
 - b. Revisions to details shown on Drawings.
 - c. Depths of foundations below and in relation to first floor.

- d. Locations and depths of underground utilities.
- e. Revisions to routing of piping and conduits.
- f. Revisions to electrical circuitry.
- g. Actual equipment locations.
- h. Duct size and routing.
- i. Locations of concealed internal utilities.
- j. Changes made by Change Order or Construction Change Directive.
- k. Changes made following Architect's Supplemental Instruction and written orders.
- 1. Details not on the original Contract Drawings.
- m. Field records for variable and concealed conditions.
- n. Record information on the Work that is shown only schematically.
- 3. Mark the Contract Drawings and Shop Drawings completely and accurately. Use personnel proficient at recording graphic information in production of marked-up record prints.
- 4. Mark record sets with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location.
- 5. Mark important additional information that was either shown schematically or omitted from original Drawings.
- 6. Note Request for Interpretation (RFI) numbers and dates, Architectural Supplemental Instructions (ASI) numbers, Construction Change Directive numbers, alternate numbers, Change Order numbers, and similar identification, where applicable.

2.2 MISCELLANEOUS RECORD SUBMITTALS

- A. Assemble miscellaneous records required by other Specification Sections for miscellaneous record keeping and submittal in connection with actual performance of the Work. Bind or file miscellaneous records and identify each, ready for continued use and reference.
- B. Format: Submit miscellaneous record submittals as PDF electronic file, paper copy or scanned PDF electronic file(s) of marked-up miscellaneous record submittals.
 - 1. Include miscellaneous record submittals directory organized by Specification Section number and title, electronically linked to each item of miscellaneous record submittals.

PART 3 - EXECUTION

3.1 RECORDING AND MAINTENANCE

- A. Recording: Maintain one copy of each submittal during the construction period for project record document purposes. Post changes and revisions to project record documents as they occur; do not wait until end of Project.
- B. Maintenance of Record Documents and Samples: Store record documents and Samples in the field office apart from the Contract Documents used for construction. Do not use project record documents for construction purposes. Maintain record documents in good order and in a clean, dry, legible condition, protected from deterioration and loss. Provide access to project record documents for Architect's reference during normal working hours.

END OF SECTION 017839

SECTION 024119 - SELECTIVE DEMOLITION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Demolition and removal of selected portions of building or structure.
- 2. Demolition and removal of selected site elements.

B. Related Requirements:

- 1. Section 011000 "Summary" for restrictions on the use of the premises, Owner-occupancy requirements, and phasing requirements.
- 2. Section 017300 "Execution" for cutting and patching procedures.

1.3 DEFINITIONS

- A. Remove: Detach items from existing construction and legally dispose of them off-site unless indicated to be removed and salvaged or removed and reinstalled.
- B. Remove and Salvage: Carefully detach from existing construction, in a manner to prevent damage, and deliver to Owner.
- C. Remove and Reinstall: Detach items from existing construction, prepare for reuse, and reinstall where indicated.
- D. Existing to Remain: Existing items of construction that are not to be permanently removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.

1.4 MATERIALS OWNERSHIP

A. Unless otherwise indicated, demolition waste becomes property of Contractor.

1.5 PREINSTALLATION MEETINGS

- A. Predemolition Conference: Conduct conference at Project site.
 - 1. Inspect and discuss condition of construction to be selectively demolished.
 - 2. Review and finalize selective demolition schedule and verify availability of materials, demolition personnel, equipment, and facilities needed to make progress and avoid delays.
 - 3. Review requirements of work performed by other trades that rely on substrates exposed by selective demolition operations.
 - 4. Review areas where existing construction is to remain and requires protection.

1.6 INFORMATIONAL SUBMITTALS

A. Proposed Protection Measures: Submit report, including drawings, that indicates the measures proposed for protecting individuals and property, for dust control and, for noise control. Indicate proposed locations and construction of barriers.

- B. Schedule of Selective Demolition Activities: Indicate the following:
 - 1. Detailed sequence of selective demolition and removal work, with starting and ending dates for each activity. Ensure Owner's on-site operations are interrupted only to the degree approved by the Owner.
 - 2. Interruption of utility services. Indicate how long utility services will be interrupted.
 - 3. Coordination for shutoff, capping, and continuation of utility services.
 - 4. Use of stairs as coordinated with, and approved by, the Owner.
 - 5. Coordination of Owner's continuing occupancy of portions of existing building and of Owner's partial occupancy of completed Work.

1.7 FIELD CONDITIONS

- A. Owner will occupy portions of building immediately adjacent to selective demolition area. Conduct selective demolition so Owner's operations will be disrupted only to the degree approved by the Owner.
- B. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.
- C. Notify Architect of discrepancies between existing conditions and Drawings before proceeding with selective demolition.
- D. Hazardous Materials: Hazardous materials are present in buildings and structures to be selectively demolished. A report on the presence of hazardous materials is on file with the Owner for review and use. Examine report to become aware of locations where hazardous materials are present.
- E. Storage or sale of removed items or materials on-site is not permitted.
- F. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.
 - 1. Maintain fire-protection facilities in service during selective demolition operations.

PART 2 - PRODUCTS

2.1 PEFORMANCE REQUIREMENTS

- A. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.
- B. Standards: Comply with ANSI/ASSE A10.6 and NFPA 241.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify that utilities have been disconnected and capped before starting selective demolition operations.
- B. Review record documents of existing construction provided by Owner. Owner does not guarantee that existing conditions are same as those indicated in record documents.
- C. Survey existing conditions and correlate with requirements indicated to determine extent of selective demolition required.
- D. When unanticipated mechanical, electrical, or structural elements that conflict with intended function or design are encountered, investigate and measure the nature and extent of conflict. Promptly submit a written report to Architect.

3.2 PREPARATION

- A. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
- B. Temporary Facilities: Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.
 - 1. Provide protection to ensure safe passage of people around selective demolition area and to and from occupied portions of building.
 - 2. Provide temporary weather protection, during interval between selective demolition of existing construction on exterior surfaces and new construction, to prevent water leakage and damage to structure and interior areas.
 - 3. Protect walls, ceilings, floors, and other existing finish work that are to remain or that are exposed during selective demolition operations.
 - 4. Cover and protect furniture, furnishings, and equipment that have not been removed.

3.3 SELECTIVE DEMOLITION, GENERAL

- A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:
 - 1. Proceed with selective demolition systematically, from higher to lower level. Complete selective demolition operations above each floor or tier before disturbing supporting members on the next lower level.
 - 2. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping, to minimize disturbance of adjacent surfaces. Temporarily cover openings to remain.
 - Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.
 - 4. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of hidden space before starting flame-cutting operations. Maintain portable fire-suppression devices during flame-cutting operations.
 - 5. Maintain adequate ventilation when using cutting torches.
 - 6. Remove decayed, vermin-infested, or otherwise dangerous or unsuitable materials and promptly dispose of off-site.
 - 7. Remove structural framing members and lower to ground by method suitable to avoid free fall and to prevent ground impact or dust generation.
 - 8. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.
 - 9. Dispose of demolished items and materials promptly.

3.4 SELECTIVE DEMOLITION PROCEDURES FOR SPECIFIC MATERIALS

- A. Concrete: Demolish in sections. Cut concrete full depth at junctures with construction to remain and at regular intervals using power-driven saw, then remove concrete between saw cuts.
- B. Masonry: Demolish in small sections. Cut masonry at junctures with construction to remain, using power-driven saw, then remove masonry between saw cuts.
- C. Concrete Slabs-on-Grade: Saw-cut perimeter of area to be demolished, then break up and remove.

D. Resilient Floor Coverings: Remove floor coverings and adhesive according to recommendations in RFCI's "Recommended Work Practices for the Removal of Resilient Floor Coverings."

3.5 DISPOSAL OF DEMOLISHED MATERIALS

- A. General: Except for items or materials indicated to be reused, salvaged, reinstalled, or otherwise indicated to remain Owner's property, remove demolished materials from Project site and legally dispose of them in an EPA-approved landfill acceptable to authorities having jurisdiction.
 - 1. Do not allow demolished materials to accumulate on-site.
 - 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
 - 3. Remove debris from elevated portions of building by chute, hoist, or other device that will convey debris to grade level in a controlled descent.
 - 4. Comply with requirements specified in Section 017419 "Construction Waste Management and Disposal."
- B. Burning: Do not burn demolished materials.
- C. Disposal: Transport demolished materials off Owner's property and legally dispose of them.

3.6 CLEANING

A. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began.

END OF SECTION 024119

SECTION 033000 - CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes cast-in-place concrete, including formwork, reinforcement, concrete materials, mixture design, placement procedures, and finishes, for the following:
 - 1. Footings.
 - 2. Foundation walls.
 - 3. Slabs-on-grade.
 - 4. Suspended slabs.
 - 5. Building walls.

B. Related Sections:

- 1. Section 312000 "Earth Moving" for drainage fill under slabs-on-grade.
- 2. Section 321313 "Concrete Paving" for concrete pavement and walks.

1.3 DEFINITIONS

A. Cementitious Materials: Portland cement alone or in combination with one or more of the following: blended hydraulic cement, fly ash and other pozzolans, ground granulated blast-furnace slag, and silica fume; subject to compliance with requirements.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer and testing agency.
- B. Field quality-control reports.
 - 1. Submit written verification from vapor retarder manufacturer's representative that the vapor retarder is installed in accordance with specification requirements.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.
 - 1. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-1 or an equivalent certification program.
 - 2. Personnel performing laboratory tests shall be ACI-certified Concrete Strength Testing Technician and Concrete Laboratory Testing Technician Grade I. Testing Agency laboratory supervisor shall be an ACI-certified Concrete Laboratory Testing Technician Grade II.
- B. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant, obtain aggregate from single source, and obtain admixtures from single source from single manufacturer.

- C. Welding Qualifications: Qualify procedures and personnel according to AWS D1.4/D 1.4M, "Structural Welding Code Reinforcing Steel."
- D. ACI Publications: Comply with the following unless modified by requirements in the Contract Documents:
 - 1. ACI 301, "Specifications for Structural Concrete," Sections 1 through 5 and Section 7, "Lightweight Concrete."
 - 2. ACI 117, "Specifications for Tolerances for Concrete Construction and Materials."

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Steel Reinforcement: Deliver, store, and handle steel reinforcement to prevent bending and damage.
- B. Waterstops: Store waterstops under cover to protect from moisture, sunlight, dirt, oil, and other contaminants.

PART 2 - PRODUCTS

2.1 FORM-FACING MATERIALS

- A. Smooth-Formed Finished Concrete: Form-facing panels that will provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.
 - 1. Plywood, metal, or other approved panel materials.
 - 2. Exterior-grade plywood panels, suitable for concrete forms, complying with DOC PS 1, and as follows:
 - a. Structural 1, B-B or better; mill oiled and edge sealed.
 - b. B-B (Concrete Form), Class 1 or better; mill oiled and edge sealed.
- B. Rough-Formed Finished Concrete: Plywood, lumber, metal, or another approved material. Provide lumber dressed on at least two edges and one side for tight fit.
- C. Void Forms: Biodegradable paper surface, treated for moisture resistance, structurally sufficient to support weight of plastic concrete and other superimposed loads.
- D. Chamfer Strips: Wood, metal, PVC, or rubber strips, 3/4 by 3/4 inch (19 by 19 mm), minimum.
- E. Rustication Strips: Wood, metal, PVC, or rubber strips, kerfed for ease of form removal.
- F. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent treatments of concrete surfaces.
 - 1. Formulate form-release agent with rust inhibitor for steel form-facing materials.
- G. Form Ties: Factory-fabricated, removable or snap-off metal or glass-fiber-reinforced plastic form ties designed to resist lateral pressure of fresh concrete on forms and to prevent spalling of concrete on removal.
 - 1. Furnish units that will leave no corrodible metal closer than 1 inch (25 mm) to the plane of exposed concrete surface.

2.2 STEEL REINFORCEMENT

- A. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), deformed.
- B. Low-Alloy-Steel Reinforcing Bars: ASTM A 706/A 706M, deformed.
- C. Plain-Steel Wire: ASTM A 82/A 82M, galvanized.

D. Plain-Steel Welded Wire Reinforcement: ASTM A 185/A 185M, plain, fabricated from as-drawn steel wire into flat sheets.

2.3 REINFORCEMENT ACCESSORIES

- A. Joint Dowel Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), plain-steel bars, cut true to length with ends square and free of burrs.
- B. Zinc Repair Material: ASTM A 780, zinc-based solder, paint containing zinc dust, or sprayed zinc.
- C. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire reinforcement in place. Manufacture bar supports from steel wire, plastic, or precast concrete according to CRSI's "Manual of Standard Practice," of greater compressive strength than concrete and as follows:
 - 1. For concrete surfaces exposed to view where legs of wire bar supports contact forms, use CRSI Class 1 plastic-protected steel wire or CRSI Class 2 stainless-steel bar supports.
 - 2. For zinc-coated reinforcement, use galvanized wire or dielectric-polymer-coated wire bar supports.

2.4 CONCRETE MATERIALS

- A. Cementitious Material: Use the following cementitious materials, of the same type, brand, and source, throughout Project:
 - 1. Portland Cement: ASTM C 150, Type I/II, gray.
- B. Normal-Weight Aggregates: ASTM C 33, Class 1N coarse aggregate or better, graded. Provide aggregates from a single source.
 - 1. Maximum Coarse-Aggregate Size: 1 inch (25 mm) nominal.
 - 2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.
- C. Lightweight Aggregate: ASTM C 330, 3/4-inch (19-mm) nominal maximum aggregate size.
- D. Water: ASTM C 94/C 94M and potable.

2.5 ADMIXTURES

- A. Air-Entraining Admixture: ASTM C 260.
- B. Chemical Admixtures: Provide admixtures certified by manufacturer to be compatible with other admixtures and that will not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.
 - 1. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
 - 2. Retarding Admixture: ASTM C 494/C 494M, Type B.
 - 3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
 - 4. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
 - 5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
 - 6. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.
 - 7. Concrete Moisture Vapor Reduction Admixture: In accordance with Section 030510.

2.6 WATERSTOPS

- A. Flexible Rubber Waterstops: CE CRD-C 513, for embedding in concrete to prevent passage of fluids through joints. Factory-fabricate corners, intersections, and directional changes.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- Greenstreak.
- b. Williams Products, Inc.
- 2. Profile: As indicated.
- 3. Dimensions: 4 inches by 3/16 inch thick (100 mm by 4.75 mm thick), dumbbell.

2.7 VAPOR RETARDERS

- A. Sheet Vapor Retarder: ASTM E 1745, Class A, with maximum perm rating of 0.01 and a maximum water vapor transmission rate of 0.008 according to ASTM E 96. Include manufacturer's recommended adhesive and/or pressure-sensitive tape.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Meadows, W. R., Inc.; Perminator 15.
 - b. Stego Industries, LLC; Stego Wrap 15 mil Class A.
 - c. <u>Reef Industries</u>; Griffolyn 15 Mil Green.
- B. Pipe Boots: Manufacturer's standard boot fabricated to maintain the integrity of the vapor retarder system.
- C. Granular Base: Clean mixture of NDOR Crushed Rock for Base Course with 100 percent passing a 1-1/2-inch (37.5-mm) sieve and 0 to 6 percent passing a No. 200 (0.075-mm) sieve.

2.8 CURING MATERIALS

- A. Evaporation Retarder: Waterborne, monomolecular film forming, manufactured for application to fresh concrete
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to the following:
 - a. BASF Construction Chemicals Building Systems; Confilm.
 - b. Conspec by Dayton Superior; Aquafilm.
 - c. Dayton Superior Corporation; Sure Film (J-74).
 - d. Euclid Chemical Company (The), an RPM company; Eucobar.
 - e. L&M Construction Chemicals, Inc.; E-CON.
 - f. Symons by Dayton Superior; Finishing Aid.
- B. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. (305 g/sq. m) when dry.
- C. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.
- D. Water: Potable.

2.9 RELATED MATERIALS

- A. Expansion- and Isolation-Joint-Filler Strips: ASTM D 4818, polyethylene foam expansion/isolation joint material.
- B. Bonding Agent: ASTM C 1059/C 1059M, Type II, non-redispersible, acrylic emulsion or styrene butadiene.
- C. Reglets: Fabricate reglets of not less than 0.022-inch- (0.55-mm-) thick, galvanized-steel sheet. Temporarily fill or cover face opening of reglet to prevent intrusion of concrete or debris.

D. Dovetail Anchor Slots: Hot-dip galvanized-steel sheet, not less than 0.034 inch (0.85 mm) thick, with bent tab anchors. Temporarily fill or cover face opening of slots to prevent intrusion of concrete or debris.

2.10 REPAIR MATERIALS

- A. Repair Underlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/8 inch (3.2 mm) and that can be feathered at edges to match adjacent floor elevations.
 - 1. Cement Binder: ASTM C 150, portland cement or hydraulic or blended hydraulic cement as defined in ASTM C 219.
 - 2. Primer: Product of underlayment manufacturer recommended for substrate, conditions, and application.
 - 3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch (3.2 to 6 mm) or coarse sand as recommended by underlayment manufacturer.
 - 4. Compressive Strength: Not less than 4100 psi (29 MPa) at 28 days when tested according to ASTM C 109/C 109M.
- B. Repair Overlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/4 inch (6.4 mm) and that can be filled in over a scarified surface to match adjacent floor elevations.
 - 1. Cement Binder: ASTM C 150, portland cement or hydraulic or blended hydraulic cement as defined in ASTM C 219.
 - 2. Primer: Product of topping manufacturer recommended for substrate, conditions, and application.
 - 3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch (3.2 to 6 mm) or coarse sand as recommended by topping manufacturer.
 - 4. Compressive Strength: Not less than 5000 psi (34.5 MPa) at 28 days when tested according to ASTM C 109/C 109M.

2.11 CONCRETE MIXTURES, GENERAL

- A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, according to ACI 301.
- B. Limit water-soluble, chloride-ion content in hardened concrete to 0.06 percent by weight of cement.
- C. Admixtures: Use admixtures according to manufacturer's written instructions.
 - 1. Use water-reducing or plasticizing admixture in concrete, as required, for placement and workability.
 - 2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
 - 3. Use water-reducing admixture in pumped concrete and concrete with a water-cementitious materials ratio below 0.50.

2.12 CONCRETE MIXTURES FOR BUILDING ELEMENTS

- A. Footings: Proportion normal-weight concrete mixture as follows:
 - 1. Minimum Compressive Strength: 4500 psi (31 MPa) at 28 days.
 - 2. Maximum Water-Cementitious Materials Ratio: 0.45.
 - 3. Slump Limit: 5 inches (125 mm) or 8 inches (200 mm) for concrete with verified slump of 2 to 4 inches (50 to 100 mm) before adding high-range water-reducing admixture or plasticizing admixture, plus or minus 1 inch (25 mm).
 - 4. Air Content: 6.0 percent, plus or minus 1.5 percent at point of delivery for 1-inch (25-mm) nominal maximum aggregate size.

- B. Foundation Walls: Proportion normal-weight concrete mixture as follows:
 - 1. Minimum Compressive Strength: 4500 psi (31 MPa) at 28 days.
 - 2. Maximum Water-Cementitious Materials Ratio: 0.45.
 - 3. Slump Limit: 5 inches (125 mm) or 8 inches (200 mm) for concrete with verified slump of 2 to 4 inches (50 to 100 mm) before adding high-range water-reducing admixture or plasticizing admixture, plus or minus 1 inch (25 mm).
 - 4. Air Content: 6 percent, plus or minus 1.5 percent at point of delivery for 1-inch (25-mm) nominal maximum aggregate size.
- C. Slabs-on-Grade: Proportion normal-weight concrete mixture as follows:
 - 1. Minimum Compressive Strength: 4500 psi (31 MPa) at 28 days.
 - 2. Minimum Cementitious Materials Content: 540 lb/cu. vd. (320 kg/cu. m).
 - 3. Slump Limit: 4 inches (100 mm), plus or minus 1 inch (25 mm).
 - 4. Air Content: 6 percent, plus or minus 1.5 percent at point of delivery for 3/4-inch (19-mm) nominal maximum aggregate size.
 - 5. Air Content: Do not allow air content of trowel-finished floors to exceed 3 percent.
 - 6. Maximum Water-Cementitious Materials Ratio: 0.45.
- D. Suspended Slabs: Proportion structural lightweight concrete mixture as follows:
 - 1. Minimum Compressive Strength: 4000 psi (27.6 MPa) at 28 days.
 - 2. Calculated Equilibrium Unit Weight: 115 lb/cu. ft. (1842 kg/cu. m), plus or minus 3 lb/cu. ft. (48.1 kg/cu. m) as determined by ASTM C 567.
 - 3. Slump Limit: 4 inches (100 mm), plus or minus 1 inch (25 mm).
 - 4. Air Content: Do not allow air content of trowel-finished floors to exceed 3 percent.

2.13 FABRICATING REINFORCEMENT

A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

2.14 CONCRETE MIXING

- A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94/C 94M, and furnish batch ticket information.
 - 1. When air temperature is between 85 and 90 deg F (30 and 32 deg C), reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F (32 deg C), reduce mixing and delivery time to 60 minutes.
- B. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M. Mix concrete materials in appropriate drum-type batch machine mixer.
 - 1. For mixer capacity of 1 cu. yd. (0.76 cu. m) or smaller, continue mixing at least 1-1/2 minutes, but not more than 5 minutes after ingredients are in mixer, before any part of batch is released.
 - 2. For mixer capacity larger than 1 cu. yd. (0.76 cu. m), increase mixing time by 15 seconds for each additional 1 cu. yd. (0.76 cu. m).
 - 3. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mixture type, mixture time, quantity, and amount of water added. Record approximate location of final deposit in structure.

PART 3 - EXECUTION

3.1 FORMWORK

A. Design, erect, shore, brace, and maintain formwork, according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until structure can support such loads.

- B. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117.
- C. Limit concrete surface irregularities, designated by ACI 347 as abrupt or gradual, as follows:
 - 1. Class A, 1/8 inch (3.2 mm) for smooth-formed finished surfaces.
 - 2. Class B, 1/4 inch (6 mm) for rough-formed finished surfaces.
 - 3. Do not form contraction joints in slabs scheduled to receive composition flooring, carpet, or other finish flooring.
 - 4. Where thin-set tile or stone flooring is indicated, form contraction joints as shown to coincide with joints in floor covering.
 - 5. Space contraction joints to form approximately square sections with areas not exceeding 250 square feet (23.2 sq. m.). Locate joints at isolation joints, columns and equipment pads, changes in slab thickness and other features penetrating or intersecting the slab.
- D. Construct forms tight enough to prevent loss of concrete mortar.
- E. Fabricate forms for easy removal without hammering or prying against concrete surfaces. Provide crush or wrecking plates where stripping may damage cast concrete surfaces. Provide top forms for inclined surfaces steeper than 1.5 horizontal to 1 vertical.
 - 1. Install keyways, reglets, recesses, and the like, for easy removal.
 - 2. Do not use rust-stained steel form-facing material.
- F. Set edge forms, bulkheads, and intermediate screed strips for slabs to achieve required elevations and slopes in finished concrete surfaces. Provide and secure units to support screed strips; use strike-off templates or compacting-type screeds.
- G. Provide temporary openings for cleanouts and inspection ports where interior area of formwork is inaccessible. Close openings with panels tightly fitted to forms and securely braced to prevent loss of concrete mortar. Locate temporary openings in forms at inconspicuous locations.
- H. Chamfer exterior corners and edges of permanently exposed concrete, except where masonry is laid flush with face of exposed concrete.
- I. Form openings, chases, offsets, sinkages, keyways, reglets, blocking, screeds, and bulkheads required in the Work. Determine sizes and locations from trades providing such items.
- J. Clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, and other debris just before placing concrete.
- K. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment.
- L. Coat contact surfaces of forms with form-release agent, according to manufacturer's written instructions, before placing reinforcement.

3.2 EMBEDDED ITEMS

- A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 1. Install anchor rods, accurately located, to elevations required and complying with tolerances in Section 7.5 of AISC's "Code of Standard Practice for Steel Buildings and Bridges."
 - 2. Install reglets to receive waterproofing and to receive through-wall flashings in outer face of concrete frame at exterior walls, where flashing is shown at lintels, shelf angles, and other conditions.

- 3. Install dovetail anchor slots in concrete structures as indicated.
- 4. All items embedded in or penetrating structural concrete members, including elevated slabs, not shown on Structural Drawings, shall be approved by the Architect prior to placement.

3.3 REMOVING AND REUSING FORMS

- A. General: Formwork for sides of beams, walls, columns, and similar parts of the Work that does not support weight of concrete may be removed after cumulatively curing at not less than 50 deg F (10 deg C) for 24 hours after placing concrete. Concrete has to be hard enough to not be damaged by form-removal operations and curing and protection operations need to be maintained.
 - 1. Leave formwork for beam soffits, joists, slabs, and other structural elements that supports weight of concrete in place until concrete has achieved at least 70 percent of its 28-day design compressive strength.
 - Remove forms only if shores have been arranged to permit removal of forms without loosening or disturbing shores.
- B. Clean and repair surfaces of forms to be reused in the Work. Split, frayed, delaminated, or otherwise damaged form-facing material will not be acceptable for exposed surfaces. Apply new form-release agent.
- C. When forms are reused, clean surfaces, remove fins and laitance, and tighten to close joints. Align and secure joints to avoid offsets. Do not use patched forms for exposed concrete surfaces unless approved by Architect.

3.4 VAPOR RETARDERS

- A. Sheet Vapor Retarders: Place, protect, and repair sheet vapor retarder according to ASTM E 1643 and manufacturer's written instructions.
 - 1. Lap joints 6 inches (150 mm), or as otherwise required by the manufacturer, and seal with manufacturer's recommended tape.
- B. Provide pipe boot for all pipes penetrating the floor slab.
- C. Vapor Retarder Inspection: Prior to placement of granular base, arrange for vapor retarder manufacturer's technical personnel to inspect vapor retarder installation on completion.
- D. Repair or remove and replace components of vapor retarder system where inspections indicate that they do not comply with specified requirements.
- E. Additional inspections, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.
- F. Granular Course: Cover vapor retarder with granular base, moisten, and compact with mechanical equipment to elevation tolerances of plus 0 inch (0 mm) or minus 3/4 inch (19 mm).

3.5 STEEL REINFORCEMENT

- A. General: Comply with CRSI's "Manual of Standard Practice" for placing reinforcement.
 - Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.
- B. Clean reinforcement of loose rust and mill scale, earth, ice, and other foreign materials that would reduce bond to concrete.

- C. Accurately position, support, and secure reinforcement against displacement. Locate and support reinforcement with bar supports to maintain minimum concrete cover. Do not tack weld crossing reinforcing bars.
 - 1. Weld reinforcing bars according to AWS D1.4/D 1.4M, where indicated.
- D. Set wire ties with ends directed into concrete, not toward exposed concrete surfaces.
- E. Install welded wire reinforcement in longest practicable lengths on bar supports spaced to minimize sagging. Lap edges and ends of adjoining sheets at least one mesh spacing. Offset laps of adjoining sheet widths to prevent continuous laps in either direction. Lace overlaps with wire.
- F. Welding of reinforcing bars is not permitted except where specifically indicated on the Drawings.

3.6 JOINTS

- A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.
- B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.
 - 1. Place joints perpendicular to main reinforcement. Continue reinforcement across construction joints unless otherwise indicated. Do not continue reinforcement through sides of strip placements of floors and slabs.
 - 2. Form keyed joints as indicated. Embed keys at least 1-1/2 inches (38 mm) into concrete.
 - 3. Locate joints for beams, slabs, joists, and girders in the middle third of spans. Offset joints in girders a minimum distance of twice the beam width from a beam-girder intersection.
 - 4. Locate horizontal joints in walls and columns at underside of floors, slabs, beams, and girders and at the top of footings or floor slabs.
 - 5. Space vertical joints in walls as indicated. Locate joints beside piers integral with walls, near corners, and in concealed locations where possible.
 - 6. Use a bonding agent at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
- C. Contraction Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of concrete thickness as follows:
 - 1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint to a radius of 1/8 inch (3.2 mm). Repeat grooving of contraction joints after applying surface finishes. Eliminate groover tool marks on concrete surfaces.
 - 2. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch- (3.2-mm-) wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before concrete develops random contraction cracks.
 - 3. Do not form contraction joints in slabs scheduled to receive composition flooring, carpet, or other finish flooring.
- D. Isolation Joints in Slabs-on-Grade: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.
 - 1. Extend joint-filler strips full width and depth of joint, terminating flush with finished concrete surface unless otherwise indicated.
 - 2. Terminate full-width joint-filler strips not less than 1/2 inch (13 mm) or more than 1 inch (25 mm) below finished concrete surface where joint sealants, specified in Section 079200 "Joint Sealants," are indicated.

- 3. Install joint-filler strips in lengths as long as practicable. Where more than one length is required, lace or clip sections together.
- E. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or asphalt coat one-half of dowel length to prevent concrete bonding to one side of joint.

3.7 WATERSTOPS

A. Flexible Waterstops: Install in construction joints and at other joints indicated to form a continuous diaphragm. Install in longest lengths practicable. Support and protect exposed waterstops during progress of the Work. Field-fabricate joints in waterstops according to manufacturer's written instructions.

3.8 CONCRETE PLACEMENT

- A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections have been performed.
- B. Before test sampling and placing concrete, water may be added at Project site, subject to limitations of ACI 301.
 - 1. Do not add water to concrete after adding high-range water-reducing admixtures to mixture.
- C. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete will be placed on concrete that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as indicated. Deposit concrete to avoid segregation.
 - 1. Deposit concrete in horizontal layers of depth to not exceed formwork design pressures and in a manner to avoid inclined construction joints.
 - 2. Consolidate placed concrete with mechanical vibrating equipment according to ACI 301.
 - 3. Do not use vibrators to transport concrete inside forms. Insert and withdraw vibrators vertically at uniformly spaced locations to rapidly penetrate placed layer and at least 6 inches (150 mm) into preceding layer. Do not insert vibrators into lower layers of concrete that have begun to lose plasticity. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing mixture constituents to segregate.
- D. Deposit and consolidate concrete for floors and slabs in a continuous operation, within limits of construction joints, until placement of a panel or section is complete.
 - 1. Consolidate concrete during placement operations so concrete is thoroughly worked around reinforcement and other embedded items and into corners.
 - 2. Maintain reinforcement in position on chairs during concrete placement.
 - 3. Screed slab surfaces with a straightedge and strike off to correct elevations.
 - 4. Slope surfaces uniformly to drains where required.
 - 5. Begin initial floating using bull floats or darbies to form a uniform and open-textured surface plane, before excess bleedwater appears on the surface. Do not further disturb slab surfaces before starting finishing operations.
- E. Cold-Weather Placement: Comply with ACI 306.1 and as follows. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.
 - 1. When average high and low temperature is expected to fall below 40 deg F (4.4 deg C) for three successive days, maintain delivered concrete mixture temperature within the temperature range required by ACI 301.
 - 2. Do not use frozen materials or materials containing ice or snow. Do not place concrete on frozen subgrade or on subgrade containing frozen materials.

- 3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in mixture designs.
- F. Hot-Weather Placement: Comply with ACI 301 and as follows:
 - 1. Maintain concrete temperature below 90 deg F (32 deg C) at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
 - 2. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade uniformly moist without standing water, soft spots, or dry areas. Do not fog-spray any exposed vapor retarder prior to placement of slab-on-grade concrete.

3.9 FINISHING FORMED SURFACES

- A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defects repaired and patched. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
 - 1. Apply to concrete surfaces not exposed to public view.
- B. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and defects. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
 - 1. Apply to concrete surfaces exposed to public view or to be covered with a coating or covering material applied directly to concrete.
- C. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces unless otherwise indicated.

3.10 FINISHING FLOORS AND SLABS

- A. General: Comply with ACI 302.1R recommendations for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.
- B. Float Finish: Consolidate surface with power-driven floats or by hand floating if area is small or inaccessible to power driven floats. Restraighten, cut down high spots, and fill low spots. Repeat float passes and restraightening until surface is left with a uniform, smooth, granular texture.
 - 1. Apply float finish to surfaces to receive trowel finish and to be covered with carpet...
- C. Trowel Finish: After applying float finish, apply first troweling and consolidate concrete by hand or power-driven trowel. Continue troweling passes and restraighten until surface is free of trowel marks and uniform in texture and appearance. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.
 - 1. Apply a trowel finish to interior surfaces exposed to view.
 - 2. Finish and measure surface so gap at any point between concrete surface and an unleveled, freestanding, 10-ft.- (3.05-m-) long straightedge resting on two high spots and placed anywhere on the surface does not exceed 1/8 inch (3.2 mm).
- D. Broom Finish: Apply a broom finish to exterior concrete platforms, steps, ramps, and elsewhere as indicated.
 - 1. Immediately after float finishing, slightly roughen trafficked surface by brooming with fiber-bristle broom perpendicular to main traffic route. Coordinate required final finish with Architect before application.

3.11 MISCELLANEOUS CONCRETE ITEMS

- A. Filling In: Fill in holes and openings left in concrete structures after work of other trades is in place unless otherwise indicated. Mix, place, and cure concrete, as specified, to blend with in-place construction. Provide other miscellaneous concrete filling indicated or required to complete the Work.
- B. Curbs: Provide monolithic finish to interior curbs by stripping forms while concrete is still green and by steel-troweling surfaces to a hard, dense finish with corners, intersections, and terminations slightly rounded.

3.12 CONCRETE PROTECTING AND CURING

- A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and ACI 301 for hot-weather protection during curing.
- B. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h (1 kg/sq. m x h) before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.
- C. Formed Surfaces: Cure formed concrete surfaces, including underside of beams, supported slabs, and other similar surfaces. If forms remain during curing period, moist cure after loosening forms. If removing forms before end of curing period, continue curing for the remainder of the curing period.
- D. Unformed Surfaces: Begin curing immediately after finishing concrete. Cure unformed surfaces, including floors and slabs, concrete floor toppings, and other surfaces.
- E. Cure concrete according to ACI 308.1, by one or a combination of the following methods:
 - 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 - a. Water.
 - b. Continuous water-fog spray.
 - c. Absorptive cover, water saturated, and kept continuously wet. Cover concrete surfaces and edges with 12-inch (300-mm) lap over adjacent absorptive covers.
 - 2. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period. Do not use curing compounds on surfaces which are to be covered with flooring material applied directly to concrete, chemical hardener, waterproofing, dampproofing, painting, and other coatings and finish materials, unless carefully coordinated with the covering material supplier and/or manufacturer to assure that the curing compound will not affect the bond between the concrete and that covering material.
 - a. Removal: After curing period has elapsed, remove curing compound without damaging concrete surfaces by method recommended by curing compound manufacturer unless manufacturer certifies curing compound will not interfere with bonding of floor covering used on Project.
 - 3. Curing and Sealing Compound: Apply uniformly to floors and slabs indicated as not receiving any floor coverings in a continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Repeat process 24 hours later and apply a second coat. Maintain continuity of coating and repair damage during curing period. Do not use curing and sealing compounds on surfaces which are to be covered with flooring material applied directly to concrete, chemical hardener, waterproofing, dampproofing, painting, and other coatings and finish materials, unless carefully coordinated with the covering material supplier and/or manufacturer to assure that the curing compound will not affect the bond between the concrete and that covering material.

3.13 JOINT FILLING

- A. Prepare, clean, and install joint filler according to manufacturer's written instructions.
 - 1. Defer joint filling until concrete has aged at least one month. Do not fill joints until construction traffic has permanently ceased.
- B. Remove dirt, debris, saw cuttings, curing compounds, and sealers from joints; leave contact faces of joint clean and dry.
- C. Install semirigid joint filler full depth in saw-cut joints and at least 2 inches (50 mm) deep in formed joints. Overfill joint and trim joint filler flush with top of joint after hardening.

3.14 CONCRETE SURFACE REPAIRS

- A. Defective Concrete: Repair and patch defective areas when approved by Architect. Remove and replace concrete that cannot be repaired and patched to Architect's approval.
- B. Patching Mortar: Mix dry-pack patching mortar, consisting of one part portland cement to two and one-half parts fine aggregate passing a No. 16 (1.18-mm) sieve, using only enough water for handling and placing.
- C. Repairing Formed Surfaces: Surface defects include color and texture irregularities, cracks, spalls, air bubbles, honeycombs, rock pockets, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning.
 - 1. Immediately after form removal, cut out honeycombs, rock pockets, and voids more than 1/2 inch (13 mm) in any dimension to solid concrete. Limit cut depth to 3/4 inch (19 mm). Make edges of cuts perpendicular to concrete surface. Clean, dampen with water, and brush-coat holes and voids with bonding agent. Fill and compact with patching mortar before bonding agent has dried. Fill form-tie voids with patching mortar or cone plugs secured in place with bonding agent.
 - 2. Repair defects on surfaces exposed to view by blending white portland cement and standard portland cement so that, when dry, patching mortar will match surrounding color. Patch a test area at inconspicuous locations to verify mixture and color match before proceeding with patching. Compact mortar in place and strike off slightly higher than surrounding surface.
 - 3. Repair defects on concealed formed surfaces that affect concrete's durability and structural performance as determined by Architect.
- D. Repairing Unformed Surfaces: Test unformed surfaces, such as floors and slabs, for finish and verify surface tolerances specified for each surface. Correct low and high areas. Test surfaces sloped to drain for trueness of slope and smoothness; use a sloped template.
 - 1. Repair finished surfaces containing defects. Surface defects include spalls, popouts, honeycombs, rock pockets, crazing and cracks in excess of 0.01 inch (0.25 mm) wide or that penetrate to reinforcement or completely through unreinforced sections regardless of width, and other objectionable conditions.
 - 2. After concrete has cured at least 14 days, correct high areas by grinding.
 - 3. Correct localized low areas during or immediately after completing surface finishing operations by cutting out low areas and replacing with patching mortar. Finish repaired areas to blend into adjacent concrete.
 - 4. Correct other low areas scheduled to receive floor coverings with a repair underlayment. Prepare, mix, and apply repair underlayment and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface. Feather edges to match adjacent floor elevations.
 - 5. Correct other low areas scheduled to remain exposed with a repair topping. Cut out low areas to ensure a minimum repair topping depth of 1/4 inch (6 mm) to match adjacent floor elevations.

- Prepare, mix, and apply repair topping and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface.
- 6. Repair defective areas, except random cracks and single holes 1 inch (25 mm) or less in diameter, by cutting out and replacing with fresh concrete. Remove defective areas with clean, square cuts and expose steel reinforcement with at least a 3/4-inch (19-mm) clearance all around. Dampen concrete surfaces in contact with patching concrete and apply bonding agent. Mix patching concrete of same materials and mixture as original concrete except without coarse aggregate. Place, compact, and finish to blend with adjacent finished concrete. Cure in same manner as adjacent concrete.
- 7. Repair random cracks and single holes 1 inch (25 mm) or less in diameter with patching mortar. Groove top of cracks and cut out holes to sound concrete and clean off dust, dirt, and loose particles. Dampen cleaned concrete surfaces and apply bonding agent. Place patching mortar before bonding agent has dried. Compact patching mortar and finish to match adjacent concrete. Keep patched area continuously moist for at least 72 hours.
- E. Perform structural repairs of concrete, subject to Architect's approval, using epoxy adhesive and patching mortar.
- F. Repair materials and installation not specified above may be used, subject to Architect's approval.

3.15 FIELD QUALITY CONTROL

- A. Testing and Inspecting: Contract or will engage a special inspector and qualified testing and inspecting agency to perform field tests and inspections and prepare test reports.
- B. Testing and Inspecting: Engage a qualified testing and inspecting agency to perform tests and inspections and to submit reports.
- C. Inspections:
 - 1. Steel reinforcement placement.
 - 2. Steel reinforcement welding.
 - 3. Headed bolts and studs.
 - 4. Verification of use of required design mixture.
 - 5. Concrete placement, including conveying and depositing.
 - 6. Curing procedures and maintenance of curing temperature.
 - 7. Verification of concrete strength before removal of shores and forms from beams and slabs.
- D. Concrete Tests: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:
 - 1. Testing Frequency: Obtain one composite sample for each day's pour of each concrete mixture exceeding 5 cu. yd. (4 cu. m), but less than 25 cu. yd. (19 cu. m), plus one set for each additional 50 cu. yd. (38 cu. m) or fraction thereof.
 - 2. Testing Frequency: Obtain at least one composite sample for each 25 cu. yd. (19 cu. m) or fraction thereof of each concrete mixture placed each day.
 - a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
 - 3. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.
 - 4. Air Content: ASTM C 231, pressure method, for normal-weight concrete; ASTM C 173/C 173M, volumetric method, for structural lightweight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.

- 5. Concrete Temperature: ASTM C 1064/C 1064M; one test hourly when air temperature is 40 deg F (4.4 deg C) and below and when 80 deg F (27 deg C) and above, and one test for each composite sample.
- 6. Unit Weight: ASTM C 567, fresh unit weight of structural lightweight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.
- 7. Compression Test Specimens: ASTM C 31/C 31M.
 - a. Cast and laboratory cure two sets of two standard cylinder specimens for each composite sample.
 - b. Cast and field cure two sets of two standard cylinder specimens for each composite sample.
- 8. Compressive-Strength Tests: ASTM C 39/C 39M;
 - a. Test one set of two laboratory-cured specimens at 7 days and one set of two specimens at 28 days.
 - b. Test one set of two field-cured specimens at 7 days and one set of two specimens at 28 days
 - c. A compressive-strength test shall be the average compressive strength from a set of two specimens obtained from same composite sample and tested at age indicated.
- 9. When strength of field-cured cylinders is less than 85 percent of companion laboratory-cured cylinders, Contractor shall evaluate operations and provide corrective procedures for protecting and curing in-place concrete.
- 10. Strength of each concrete mixture will be satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi (3.4 MPa).
- 11. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.
- 12. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.
- 13. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect. Testing and inspecting agency may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C 42/C 42M or by other methods as directed by Architect.
- 14. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.
- 15. Correct deficiencies in the Work that test reports and inspections indicate do not comply with the Contract Documents.
- E. Measure floor and slab flatness and levelness according to section 3.10.C.2 within 24 hours of finishing.

END OF SECTION 033000

SECTION 04 2000 - UNIT MASONRY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Concrete masonry units.
- 2. Face brick.
- 3. Mortar and grout.
- 4. Steel reinforcing bars.
- 5. Masonry joint reinforcement.
- 6. Ties and anchors.
- 7. Embedded flashing.
- 8. Miscellaneous masonry accessories.
- 9. Cavity-wall insulation.

B. Related Sections:

- Section 03 3000, CAST-IN-PLACE CONCRETE, for installing dovetail slots for masonry anchors.
- 2. Section 05 1200, STRUCTURAL STEEL FRAMING, for installing anchor sections of adjustable masonry anchors for connecting to structural steel frame.
- 3. Section 07 6200, SHEET METAL FLASHING AND TRIM, for sheet metal flashing and for furnishing manufactured reglets installed in masonry joints.

1.3 DEFINITIONS

- A. CMU(s): Concrete masonry unit(s).
- B. Reinforced Masonry: Masonry containing reinforcing steel in grouted cells.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For the following:
 - 1. Reinforcing Steel: Detail bending and placement of unit masonry reinforcing bars. Comply with ACI 315, "Details and Detailing of Concrete Reinforcement." Show elevations of reinforced walls.
 - 2. Fabricated Flashing: Detail corner units, end-dam units, and other special applications.
- C. Samples for Verification: For each type and color of the following:
 - 1. Face brick, in the form of straps of five or more bricks.
 - 2. Weep holes and vents.
- D. Mix Designs: For each type of mortar and grout. Include description of type and proportions of ingredients.

- 1. Include test reports for mortar mixes required to comply with property specification. Test according to ASTM C 109/C 109M for compressive strength, ASTM C 1506 for water retention, and ASTM C 91 for air content.
- E. Cold-Weather and Hot-Weather Procedures: Detailed description of methods, materials, and equipment to be used to comply with requirements.

1.5 QUALITY ASSURANCE

- A. Source Limitations for Masonry Units: Obtain exposed masonry units of a uniform texture and color, or a uniform blend within the ranges accepted for these characteristics, from single source from single manufacturer for each product required.
- B. Source Limitations for Mortar Materials: Obtain mortar ingredients of a uniform quality, including color for exposed masonry, from single manufacturer for each cementitious component and from single source or producer for each aggregate.
- C. Masonry Standard: Comply with ACI 530.1/ASCE 6/TMS 602 unless modified by requirements in the Contract Documents.
- D. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Section 01 3100, PROJECT MANAGEMENT AND COORDINATION.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Store masonry units on elevated platforms in a dry location. If units are not stored in an enclosed location, cover tops and sides of stacks with waterproof sheeting, securely tied. If units become wet, do not install until they are dry.
- B. Store cementitious materials on elevated platforms, under cover, and in a dry location. Do not use cementitious materials that have become damp.
- C. Store aggregates where grading and other required characteristics can be maintained and contamination avoided.
- D. Deliver preblended, dry mortar mix in moisture-resistant containers designed for use with dispensing silos. Store preblended, dry mortar mix in delivery containers on elevated platforms, under cover, and in a dry location or in covered weatherproof dispensing silos.
- E. Store masonry accessories, including metal items, to prevent corrosion and accumulation of dirt and oil.

1.7 PROJECT CONDITIONS

- A. Protection of Masonry: During construction, cover tops of walls, projections, and sills with waterproof sheeting at end of each day's work. Cover partially completed masonry when construction is not in progress.
 - 1. Extend cover a minimum of 24 inches (600 mm) down both sides of walls and hold cover securely in place.
 - 2. Where one wythe of multiwythe masonry walls is completed in advance of other wythes, secure cover a minimum of 24 inches (600 mm) down face next to unconstructed wythe and hold cover in place.
- B. Do not apply uniform floor or roof loads for at least 12 hours and concentrated loads for at least three days after building masonry walls or columns.

- C. Stain Prevention: Prevent grout, mortar, and soil from staining the face of masonry to be left exposed or painted. Immediately remove grout, mortar, and soil that come in contact with such masonry.
 - 1. Protect base of walls from rain-splashed mud and from mortar splatter by spreading coverings on ground and over wall surface.
 - 2. Protect sills, ledges, and projections from mortar droppings.
 - 3. Protect surfaces of window and door frames, as well as similar products with painted and integral finishes, from mortar droppings.
 - 4. Turn scaffold boards near the wall on edge at the end of each day to prevent rain from splashing mortar and dirt onto completed masonry.
- D. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen substrates. Remove and replace unit masonry damaged by frost or by freezing conditions. Comply with cold-weather construction requirements contained in ACI 530.1/ASCE 6/TMS 602.
 - 1. Cold-Weather Cleaning: Use liquid cleaning methods only when air temperature is 40 deg F (4 deg C) and higher and will remain so until masonry has dried, but not less than seven days after completing cleaning.
- E. Hot-Weather Requirements: Comply with hot-weather construction requirements contained in ACI 530.1/ASCE 6/TMS 602.

PART 2 - PRODUCTS

2.1 MASONRY UNITS, GENERAL

A. Defective Units: Referenced masonry unit standards may allow a certain percentage of units to contain chips, cracks, or other defects exceeding limits stated in the standard. Do not use units where such defects will be exposed in the completed Work.

2.2 CONCRETE MASONRY UNITS

- A. Shapes: Provide shapes indicated and as follows, with exposed surfaces matching exposed faces of adjacent units unless otherwise indicated.
 - 1. Provide special shapes for lintels, corners, jambs, sashes, movement joints, headers, bonding, and other special conditions.
 - 2. Provide bullnose units for outside corners unless otherwise indicated.
- B. CMUs: ASTM C 90.
 - 1. Density Classification: Normal weight.
 - 2. Size (Width): Manufactured to dimensions 3/8 inch less than nominal dimensions.
 - 3. Exposed Faces: Provide color and texture matching the range represented by Architect's sample.

2.3 CONCRETE AND MASONRY LINTELS

- A. General: Provide one of the following:
- B. Concrete Lintels: ASTM C 1623, matching CMUs in color, texture, and density classification; and with reinforcing bars indicated. Provide lintels with net-area compressive strength not less than CMUs.
- C. Masonry Lintels: Prefabricated or built-in-place masonry lintels made from bond beam CMUs with reinforcing bars placed as indicated and filled with coarse grout. Cure precast lintels before handling and installing. Temporarily support built-in-place lintels until cured.

2.4 BRICK

- A. General: Provide shapes indicated and as follows, with exposed surfaces matching finish and color of exposed faces of adjacent units:
 - 1. For ends of sills and caps and for similar applications that would otherwise expose unfinished brick surfaces, provide units without cores or frogs and with exposed surfaces finished.
 - 2. Provide special shapes for applications where stretcher units cannot accommodate special conditions, including those at corners, movement joints, bond beams, sashes, and lintels.
 - 3. Provide special shapes for applications requiring brick of size, form, color, and texture on exposed surfaces that cannot be produced by sawing.
 - 4. Provide special shapes for applications where shapes produced by sawing would result in sawed surfaces being exposed to view.
- B. Face Brick: Facing brick complying with ASTM C 216 or hollow brick complying with ASTM C 652, Class H40V (void areas between 25 and 40 percent of gross cross-sectional area).
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Sioux City Brick; Red Sunset.
 - 2. Grade: SW.
 - 3. Type: FBS.
 - 4. Initial Rate of Absorption: Less than 30 g/30 sq. in. (30 g/194 sq. cm) per minute when tested per ASTM C 67.
 - 5. Efflorescence: Provide brick that has been tested according to ASTM C 67 and is rated "not effloresced."
 - 6. Size (Actual Dimensions): 3-1/2 inches (89 mm) wide by 2-1/4 inches (57 mm) high by 7-1/2 inches (190 mm) long or 3-5/8 inches (92 mm) wide by 2-1/4 inches (57 mm) high by 7-5/8 inches (194 mm) long.
 - 7. Application: Use where brick is exposed unless otherwise indicated.

2.5 MORTAR AND GROUT MATERIALS

- A. Portland Cement: ASTM C 150, Type I or II, except Type III may be used for cold-weather construction. Provide natural color or white cement as required to produce mortar color indicated.
- B. Hydrated Lime: ASTM C 207, Type S.
- C. Portland Cement-Lime Mix: Packaged blend of portland cement and hydrated lime containing no other ingredients.
- D. Masonry Cement: ASTM C 91.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Capital Materials Corporation; Flamingo Color Masonry Cement.
 - b. Holcim (US) Inc.; Mortamix Masonry Cement.
 - c. Lafarge North America Inc.; Lafarge Masonry Cement.
 - d. Lehigh Cement Company; Lehigh Masonry Cement.
- E. Mortar Cement: ASTM C 1329.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Lafarge North America Inc.; Lafarge Mortar Cement.
- F. Aggregate for Mortar: ASTM C 144.
 - For mortar that is exposed to view, use washed aggregate consisting of natural sand or crushed stone.
 - 2. For joints less than 1/4 inch (6 mm) thick, use aggregate graded with 100 percent passing the No. 16 (1.18-mm) sieve.
 - 3. White-Mortar Aggregates: Natural white sand or crushed white stone.

- 4. Colored-Mortar Aggregates: Natural sand or crushed stone of color necessary to produce required mortar color.
- G. Aggregate for Grout: ASTM C 404.
- H. Refractory Mortar Mix: Ground fireclay or non-water-soluble, calcium aluminate, medium-duty refractory mortar that passes ASTM C 199 test; or an equivalent product acceptable to authorities having iurisdiction.
- I. Cold-Weather Admixture: Nonchloride, noncorrosive, accelerating admixture complying with ASTM C 494/C 494M, Type C, and recommended by manufacturer for use in masonry mortar of composition indicated.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Euclid Chemical Company (The); Accelguard 80.
 - b. Grace Construction Products, W. R. Grace & Co. Conn.; Morset.
- J. Water-Repellent Admixture: Liquid water-repellent mortar admixture intended for use with CMUs containing integral water repellent by same manufacturer.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ACM Chemistries; RainBloc for Mortar.
 - b. Grace Construction Products, W. R. Grace & Co. Conn.; Dry-Block Mortar Admixture.
- K. Water: Potable.

2.6 REINFORCEMENT

- A. Uncoated Steel Reinforcing Bars: ASTM A 615/A 615M or ASTM A 996/A 996M, Grade 60 (Grade 420).
- B. Masonry Joint Reinforcement, General: ASTM A 951/A 951M.
 - 1. Interior Walls: Hot-dip galvanized, carbon steel.
 - 2. Exterior Walls: Hot-dip galvanized, carbon steel.
 - 3. Wire Size for Side Rods: 0.148-inch (3.77-mm) diameter.
 - 4. Wire Size for Cross Rods: 0.148-inch (3.77-mm) diameter.
 - 5. Wire Size for Veneer Ties: 0.148-inch (3.77-mm) diameter.
 - 6. Spacing of Cross Rods, Tabs, and Cross Ties: Not more than 16 inches (407 mm) o.c.
 - 7. Provide in lengths of not less than 10 feet (3 m), with prefabricated corner and tee units.
- C. Masonry Joint Reinforcement for Single-Wythe Masonry: Truss type with single pair of side rods.
- D. Masonry Joint Reinforcement for Multiwythe Masonry:
 - 1. Tab type, truss design, with 1 side rod at each face shell of backing wythe and with rectangular tabs sized to extend at least halfway through facing wythe but with at least 5/8-inch (16-mm) cover on outside face.
 - 2. Adjustable (two-piece) type, truss design, with one side rod at each face shell of backing wythe and with separate adjustable ties with pintle-and-eye connections having a maximum adjustment of 1-1/4 inches (32 mm). Size ties to extend at least halfway through facing wythe but with at least 5/8-inch (16-mm) cover on outside face.

2.7 TIES AND ANCHORS

- A. Materials: Provide ties and anchors specified in this article that are made from materials that comply with the following unless otherwise indicated.
 - 1. Hot-Dip Galvanized, Carbon-Steel Wire: ASTM A 82/A 82M; with ASTM A 153/A 153M, Class B-2 coating.

- 2. Stainless-Steel Wire: ASTM A 580/A 580M, Type 304.
- 3. Galvanized Steel Sheet: ASTM A 653/A 653M, Commercial Steel, G60 (Z180) zinc coating.
- 4. Steel Sheet, Galvanized after Fabrication: ASTM A 1008/A 1008M, Commercial Steel, with ASTM A 153/A 153M, Class B coating.
- 5. Stainless-Steel Sheet: ASTM A 666, Type 304.
- 6. Stainless-Steel Bars: ASTM A 276 or ASTM a 666, Type 304.
- B. Wire Ties, General: Unless otherwise indicated, size wire ties to extend at least halfway through veneer but with at least 5/8-inch (16-mm) cover on outside face. Outer ends of wires are bent 90 degrees and extend 2 inches (50 mm) parallel to face of veneer.
- C. Individual Wire Ties: Rectangular units with closed ends and not less than 4 inches (100 mm) wide.
 - 1. Z-shaped ties with ends bent 90 degrees to provide hooks not less than 2 inches (50 mm) long may be used for masonry constructed from solid units.
 - 2. Where wythes do not align, use adjustable ties with pintle-and-eye connections having a maximum adjustment of 1-1/4 inches (32 mm).
 - 3. Wire: Fabricate from 3/16-inch- (4.76-mm-) diameter, hot-dip galvanized steel wire.
- D. Adjustable Anchors for Connecting to Structural Steel Framing: Provide anchors that allow vertical or horizontal adjustment but resist tension and compression forces perpendicular to plane of wall.
 - 1. Anchor Section for Welding to Steel Frame: Crimped 1/4-inch- (6.35-mm-) diameter, hot-dip galvanized steel wire.
 - 2. Tie Section: Triangular-shaped wire tie, sized to extend within 1 inch (25 mm) of masonry face, made from 0.187-inch- (4.76-mm-) diameter, hot-dip galvanized steel wire.
- E. Partition Top anchors: 0.105-inch- (2.66-mm-) thick metal plate with 3/8-inch- (9.5-mm-) diameter metal rod 6 inches (152 mm) long welded to plate and with closed-end plastic tube fitted over rod that allows rod to move in and out of tube. Fabricate from steel, hot-dip galvanized after fabrication.
- F. Adjustable Masonry-Veneer Anchors:
 - General: Provide anchors that allow vertical adjustment but resist tension and compression forces
 perpendicular to plane of wall, for attachment over sheathing to wood or metal studs, and as
 follows:
 - a. Structural Performance Characteristics: Capable of withstanding a 100-lbf (445-N) load in both tension and compression without deforming or developing play in excess of 0.05 inch (1.3 mm).
 - 2. Contractor's Option: Unless otherwise indicated, provide any of the following types of anchors:
 - Screw-Attached, Masonry-Veneer Anchors: Units consisting of a wire tie and a metal anchor section.
 - a. Products: Subject to compliance with requirements, provide the following:
 - 1) Hohmann & Barnard, Inc.; DW-10-X.
 - b. Anchor Section: Gasketed sheet metal plate, 1-1/4 inches (32 mm) wide by 6 inches (152 mm) long, with screw holes top and bottom; top and bottom ends bent to form pronged legs of length to match thickness of insulation or sheathing; and raised rib-stiffened strap, 5/8 inch (16 mm) wide by 6 inches (152 mm) long, stamped into center to provide a slot between strap and plate for inserting wire tie. Provide anchor manufacturer's standard, self-adhering, modified bituminous gaskets manufactured to fit behind anchor plate and extend beyond pronged legs.
 - c. Fabricate sheet metal anchor sections and other sheet metal parts from 0.105-inch- (2.66-mm-) thick, steel sheet, galvanized after fabrication.
 - d. Wire Ties: Triangular-, rectangular-, or T-shaped wire ties fabricated from 0.187-inch-(4.76-mm-) diameter, hot-dip galvanized steel wire.
 - 4. Seismic Masonry-Veneer Anchors: Units consisting of a metal anchor section and a connector section designed to engage a continuous wire embedded in the veneer mortar joint.
 - a. Products: Subject to compliance with requirements, provide the following:
 - 1) Hohmann & Barnard, Inc.; DW-10-X-Seismiclip.

- b. Anchor Section: Gasketed sheet metal plate, 1-1/4 inches (32 mm) wide by 6 inches (152 mm) long, with screw holes top and bottom; top and bottom ends bent to form pronged legs to bridge insulation or sheathing and contact studs; and raised rib-stiffened strap, 5/8 inch (16 mm) wide by 6 inches (152 mm) long, stamped into center to provide a slot between strap and plate for inserting wire tie. Provide anchor manufacturer's standard, self-adhering, modified bituminous gaskets manufactured to fit behind anchor plate and extend beyond pronged legs.
- c. Connector Section: Triangular wire tie and rigid PVC extrusion with snap-in grooves for inserting continuous wire. Size wire tie to extend at least halfway through veneer but with at least 5/8-inch (16-mm) cover on outside face.
- d. Fabricate sheet metal anchor sections and other sheet metal parts from 0.105-inch- (2.66-mm-) thick, steel sheet, galvanized after fabrication.
- e. Fabricate wire connector sections from 0.187-inch- (4.76-mm-) diameter, hot-dip galvanized, carbon-steel wire.
- 5. Polymer-Coated, Steel Drill Screws for Steel Studs: ASTM C 954 except manufactured with hex washer head and neoprene or EPDM washer, No. 10 (4.83-mm) diameter by length required to penetrate steel stud flange with not less than three exposed threads, and with organic polymer coating with salt-spray resistance to red rust of more than 800 hours per ASTM B 117.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) ITW Buildex; Teks Maxiseal with Climaseal finish.
 - 2) Textron Inc., Textron Fastening Systems; Elco Dril-Flex with Stalgard finish.
- 6. Stainless-Steel Drill Screws for Steel Studs: Proprietary fastener consisting of carbon-steel drill point and 300 Series stainless-steel shank, complying with ASTM C 954 except manufactured with hex washer head and neoprene or EPDM washer, No. 10 (4.83-mm) diameter by length required to penetrate steel stud flange with not less than three exposed threads.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) Dayton Superior Corporation, Dur-O-Wal Division; Stainless Steel SX Fastener.
 - 2) ITW Buildex; Scots long life Teks.

2.8 MISCELLANEOUS ANCHORS

- A. Anchor Bolts: Headed steel bolts complying with ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6); with ASTM A 563 (ASTM A 563M) hex nuts and, where indicated, flat washers; hot-dip galvanized to comply with ASTM A 153/A 153M, Class C; of dimensions indicated.
- B. Postinstalled Anchors: Torque-controlled expansion anchors or chemical anchors.
 - 1. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B 633 or ASTM F 1941 (ASTM F 1941M), Class Fe/Zn 5 unless otherwise indicated.
 - 2. Material for Exterior Locations and Where Stainless Steel Is Indicated: Alloy Group 1 (A1) stainless-steel bolts, ASTM F 593 (ASTM F 738M), and nuts, ASTM F 594 (ASTM F 836M).

2.9 EMBEDDED FLASHING MATERIALS

- A. Metal Flashing: Provide metal flashing complying with SMACNA's "Architectural Sheet Metal Manual" and Section 07 6200, SHEET METAL FLASHING AND TRIM.
 - 1. Fabricate through-wall flashing with snaplock receiver on exterior face where indicated to receive counterflashing.
 - 2. Fabricate through-wall flashing with drip edge where indicated. Fabricate by extending flashing 1/2 inch (13 mm) out from wall, with outer edge bent down 30 degrees and hemmed.
- B. Flexible Flashing: Use one of the following unless otherwise indicated:
 - 1. EPDM Flashing: Sheet flashing product made from ethylene-propylene-diene terpolymer, complying with ASTM D 4637, 0.040 inch (1.0 mm) thick.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) Carlisle Coatings & Waterproofing; Pre-Kleened EPDM Thru-Wall Flashing.
 - 2) Firestone Specialty Products; FlashGuard.

- 3) Heckmann Building Products Inc.; No. 81 EPDM Thru-Wall Flashing.
- 4) Hohmann & Barnard, Inc.; Epra-Max EPDM Thru-Wall Flashing.
- 5) Sandell Manufacturing Co., Inc.; EPDM Flashing.
- C. Application: Unless otherwise indicated, use the following:
 - 1. Where flashing is indicated to receive counterflashing, use metal flashing.
 - 2. Where flashing is indicated to be turned down at or beyond the wall face, use metal flashing.
 - 3. Where flashing is partly exposed and is indicated to terminate at the wall face, use metal flashing with a drip edge or flexible flashing with a metal drip edge.
 - 4. Where flashing is fully concealed, use flexible flashing.
 - 5. Accessories: Provide preformed corners, end dams, other special shapes, and seaming materials produced by flashing manufacturer.
- D. Solder and Sealants for Sheet Metal Flashings: As specified in Section 07 6200, SHEET METAL FLASHING AND TRIM.
- E. Adhesives, Primers, and Seam Tapes for Flashings: Flashing manufacturer's standard products or products recommended by flashing manufacturer for bonding flashing sheets to each other and to substrates.

2.10 MISCELLANEOUS MASONRY ACCESSORIES

- A. Compressible Filler: Premolded filler strips complying with ASTM D 1056, Grade 2A1; compressible up to 35 percent; of width and thickness indicated; formulated from neoprene, urethane or PVC.
- B. Preformed Control-Joint Gaskets: Made from styrene-butadiene-rubber compound, complying with ASTM D 2000, Designation M2AA-805 or PVC, complying with ASTM D 2287, Type PVC-65406 and designed to fit standard sash block and to maintain lateral stability in masonry wall; size and configuration as indicated.
- C. Bond-Breaker Strips: Asphalt-saturated, organic roofing felt complying with ASTM D 226, Type I (No. 15 asphalt felt).
- D. Weep/Vent Products: Usethe following unless otherwise indicated:
 - 1. Mesh Weep/Vent: Free-draining mesh; made from polyethylene strands, full height and width of head joint and depth 1/8 inch (3 mm) less than depth of outer wythe; in color selected from manufacturer's standard.
 - a. Products: Subject to compliance with requirements, provide the following:
 -) Mortar Net USA, Ltd.; Mortar Net Weep Vents.
- E. Cavity Drainage Material: Free-draining mesh, made from polymer strands that will not degrade within the wall cavity.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Mortar Net USA, Ltd.; Mortar Net.
 - 2. Provide one of the following configurations:
 - a. Strips, full-depth of cavity and 10 inches (250 mm) high, with dovetail shaped notches 7 inches (175 mm) deep that prevent clogging with mortar droppings.
- F. Reinforcing Bar Positioners: Wire units designed to fit into mortar bed joints spanning masonry unit cells and hold reinforcing bars in center of cells. Units are formed from 0.148-inch (3.77-mm) steel wire, hot-dip galvanized after fabrication. Provide units designed for number of bars indicated.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dayton Superior Corporation, Dur-O-Wal Division; D/A 810, D/A 812 or D/A 817.
 - b. Heckmann Building Products Inc.; No. 376 Rebar Positioner.
 - c. Hohmann & Barnard, Inc.; #RB or #RB-Twin Rebar Positioner.

d. Wire-Bond; O-Ring or Double O-Ring Rebar Positioner.

2.11 CAVITY-WALL INSULATION

- A. Extruded-Polystyrene Board Insulation: ASTM C 578, Type IV, closed-cell product extruded with an integral skin.
- B. Adhesive: Type recommended by insulation board manufacturer for application indicated.

2.12 MASONRY CLEANERS

- A. Proprietary Acidic Cleaner: Manufacturer's standard-strength cleaner designed for removing mortar/grout stains, efflorescence, and other new construction stains from new masonry without discoloring or damaging masonry surfaces. Use product expressly approved for intended use by cleaner manufacturer and manufacturer of masonry units being cleaned.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. ProSoCo, Inc.

2.13 MORTAR AND GROUT MIXES

- A. General: Do not use admixtures, including pigments, air-entraining agents, accelerators, retarders, water-repellent agents, antifreeze compounds, or other admixtures, unless otherwise indicated.
 - 1. Do not use calcium chloride in mortar or grout.
 - 2. Use portland cement-lime, masonry cement, or mortar cement mortar unless otherwise indicated.
 - 3. For exterior masonry, use portland cement-lime, masonry cement, or mortar cement mortar.
 - 4. For reinforced masonry, use portland cement-lime, masonry cement, or mortar cement mortar.
 - 5. Add cold-weather admixture (if used) at same rate for all mortar that will be exposed to view, regardless of weather conditions, to ensure that mortar color is consistent.
- B. Preblended, Dry Mortar Mix: Furnish dry mortar ingredients in form of a preblended mix. Measure quantities by weight to ensure accurate proportions, and thoroughly blend ingredients before delivering to Project site.
- C. Mortar for Unit Masonry: Comply with ASTM C 270, Property Specification. Provide the following types of mortar for applications stated unless another type is indicated.
 - 1. For masonry below grade or in contact with earth, use Type M.
 - 2. For reinforced masonry, use Type S.
 - 3. For exterior, above-grade, load-bearing and non-load-bearing walls and parapet walls; for interior load-bearing walls; for interior non-load-bearing partitions; and for other applications where another type is not indicated, use Type N.
 - 4. For interior non-load-bearing partitions, Type O may be used instead of Type N.
- D. Grout for Unit Masonry: Comply with ASTM C 476.
 - 1. Use grout of type indicated or, if not otherwise indicated, of type (fine or coarse) that will comply with Table 1.15.1 in ACI 530.1/ASCE 6/TMS 602 for dimensions of grout spaces and pour height.
 - 2. Provide grout with a slump of 8 to 11 inches (203 to 279 mm) as measured according to ASTM C 143/C 143M.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

- 1. For the record, prepare written report, endorsed by Installer, listing conditions detrimental to performance of work.
- 2. Verify that foundations are within tolerances specified.
- 3. Verify that reinforcing dowels are properly placed.
- B. Before installation, examine rough-in and built-in construction for piping systems to verify actual locations of piping connections.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

- A. Thickness: Build cavity and composite walls and other masonry construction to full thickness shown. Build single-wythe walls to actual widths of masonry units, using units of widths indicated.
- B. Build chases and recesses to accommodate items specified in this and other Sections.
- C. Leave openings for equipment to be installed before completing masonry. After installing equipment, complete masonry to match the construction immediately adjacent to opening.
- D. Use full-size units without cutting if possible. If cutting is required to provide a continuous pattern or to fit adjoining construction, cut units with motor-driven saws; provide clean, sharp, unchipped edges. Allow units to dry before laying unless wetting of units is specified. Install cut units with cut surfaces and, where possible, cut edges concealed.
- E. Select and arrange units for exposed unit masonry to produce a uniform blend of colors and textures.
 - 1. Mix units from several pallets or cubes as they are placed.
- F. Matching Existing Masonry: Match coursing, bonding, color, and texture of existing masonry.
- G. Wetting of Brick: Wet brick before laying if initial rate of absorption exceeds 30 g/30 sq. in. (30 g/194 sq. cm) per minute when tested per ASTM C 67. Allow units to absorb water so they are damp but not wet at time of laying.

3.3 TOLERANCES

- A. Dimensions and Locations of Elements:
 - 1. For dimensions in cross section or elevation do not vary by more than plus 1/2 inch (12 mm) or minus 1/4 inch (6 mm).
 - 2. For location of elements in plan do not vary from that indicated by more than plus or minus 1/2 inch (12 mm).
 - 3. For location of elements in elevation do not vary from that indicated by more than plus or minus 1/4 inch (6 mm) in a story height or 1/2 inch (12 mm) total.

B. Lines and Levels:

- 1. For bed joints and top surfaces of bearing walls do not vary from level by more than 1/4 inch in 10 feet (6 mm in 3 m), or 1/2 inch (12 mm) maximum.
- 2. For conspicuous horizontal lines, such as lintels, sills, parapets, and reveals, do not vary from level by more than 1/8 inch in 10 feet (3 mm in 3 m), 1/4 inch in 20 feet (6 mm in 6 m), or 1/2 inch (12 mm) maximum.
- 3. For vertical lines and surfaces do not vary from plumb by more than 1/4 inch in 10 feet (6 mm in 3 m), 3/8 inch in 20 feet (9 mm in 6 m), or 1/2 inch (12 mm) maximum.
- 4. For conspicuous vertical lines, such as external corners, door jambs, reveals, and expansion and control joints, do not vary from plumb by more than 1/8 inch in 10 feet (3 mm in 3 m), 1/4 inch in 20 feet (6 mm in 6 m), or 1/2 inch (12 mm) maximum.

- 5. For lines and surfaces do not vary from straight by more than 1/4 inch in 10 feet (6 mm in 3 m), 3/8 inch in 20 feet (9 mm in 6 m), or 1/2 inch (12 mm) maximum.
- 6. For vertical alignment of exposed head joints, do not vary from plumb by more than 1/4 inch in 10 feet (6 mm in 3 m), or 1/2 inch (12 mm) maximum.
- 7. For faces of adjacent exposed masonry units, do not vary from flush alignment by more than 1/16 inch (1.5 mm) except due to warpage of masonry units within tolerances specified for warpage of units.

C. Joints:

- 1. For bed joints, do not vary from thickness indicated by more than plus or minus 1/8 inch (3 mm), with a maximum thickness limited to 1/2 inch (12 mm).
- 2. For exposed bed joints, do not vary from bed-joint thickness of adjacent courses by more than 1/8 inch (3 mm).
- 3. For head and collar joints, do not vary from thickness indicated by more than plus 3/8 inch (9 mm) or minus 1/4 inch (6 mm).
- 4. For exposed head joints, do not vary from thickness indicated by more than plus or minus 1/8 inch (3 mm). Do not vary from adjacent bed-joint and head-joint thicknesses by more than 1/8 inch (3 mm).
- 5. For exposed bed joints and head joints of stacked bond, do not vary from a straight line by more than 1/16 inch (1.5 mm) from one masonry unit to the next.

3.4 LAYING MASONRY WALLS

- A. Lay out walls in advance for accurate spacing of surface bond patterns with uniform joint thicknesses and for accurate location of openings, movement-type joints, returns, and offsets. Avoid using less-than-half-size units, particularly at corners, jambs, and, where possible, at other locations.
- B. Bond Pattern for Exposed Masonry: Unless otherwise indicated, lay exposed masonry in running bond; do not use units with less than nominal 4-inch (100-mm) horizontal face dimensions at corners or jambs.
- C. Lay concealed masonry with all units in a wythe in running bond or bonded by lapping not less than 4-inches (100-mm). Bond and interlock each course of each wythe at corners. Do not use units with less than nominal 4-inch (100-mm) horizontal face dimensions at corners or jambs.
- D. Stopping and Resuming Work: Stop work by racking back units in each course from those in course below; do not tooth. When resuming work, clean masonry surfaces that are to receive mortar, remove loose masonry units and mortar, and wet brick if required before laying fresh masonry.
- E. Built-in Work: As construction progresses, build in items specified in this and other Sections. Fill in solidly with masonry around built-in items.
- F. Fill space between steel frames and masonry solidly with mortar unless otherwise indicated.
- G. Where built-in items are to be embedded in cores of hollow masonry units, place a layer of metal lath, wire mesh, or plastic mesh in the joint below and rod mortar or grout into core.
- H. Fill cores in hollow CMUs with grout 24 inches (600 mm) under bearing plates, beams, lintels, posts, and similar items unless otherwise indicated.
- I. Build non-load-bearing interior partitions full height of story to underside of solid floor or roof structure above unless otherwise indicated.
 - 1. Install compressible filler in joint between top of partition and underside of structure above.
 - 2. Fasten partition top anchors to structure above and build into top of partition. Grout cells of CMUs solidly around plastic tubes of anchors and push tubes down into grout to provide 1/2-inch

- (13-mm) clearance between end of anchor rod and end of tube. Space anchors 48 inches (1200 mm) o.c. unless otherwise indicated.
- 3. Wedge non-load-bearing partitions against structure above with small pieces of tile, slate, or metal. Fill joint with mortar after dead-load deflection of structure above approaches final position.
- 4. At fire-rated partitions, treat joint between top of partition and underside of structure above to comply with Section 07 8446, FIRE-RESISTIVE JOINT SYSTEMS.

3.5 MORTAR BEDDING AND JOINTING

- A. Lay hollow CMUs as follows:
 - 1. With face shells fully bedded in mortar and with head joints of depth equal to bed joints.
 - 2. With webs fully bedded in mortar in all courses of piers, columns, and pilasters.
 - 3. With webs fully bedded in mortar in grouted masonry, including starting course on footings.
 - 4. With entire units, including areas under cells, fully bedded in mortar at starting course on footings where cells are not grouted.
- B. Tool exposed joints slightly concave when thumbprint hard, using a jointer larger than joint thickness unless otherwise indicated.
- C. Cut joints flush for masonry walls to receive plaster or other direct-applied finishes (other than paint) unless otherwise indicated.

3.6 COMPOSITE MASONRY

- A. Collar Joints: Solidly fill collar joints by parging face of first wythe that is laid and shoving units of other wythe into place.
- B. Corners: Provide interlocking masonry unit bond in each wythe and course at corners unless otherwise indicated.
 - 1. Provide continuity with masonry joint reinforcement at corners by using prefabricated L-shaped units as well as masonry bonding.
- C. Intersecting and Abutting Walls: Unless vertical expansion or control joints are shown at juncture, bond walls together as follows:
 - 1. Provide individual metal ties not more than 16 inches (406 mm) o.c.
 - 2. Provide continuity with masonry joint reinforcement by using prefabricated T-shaped units.
 - 3. Provide rigid metal anchors not more than 24 inches (610 mm) o.c. If used with hollow masonry units, embed ends in mortar-filled cores.

3.7 CAVITY WALLS

- A. Bond wythes of cavity walls together using one of the following methods:
 - Individual Metal Ties: Provide ties as shown installed in horizontal joints, but not less than one metal tie for 2.67 sq. ft. (0.25 sq. m) of wall area spaced not to exceed 24 inches (610 mm) o.c. horizontally and 16 inches (406 mm) o.c. vertically. Stagger ties in alternate courses. Provide additional ties within 12 inches (305 mm) of openings and space not more than 36 inches (915 mm) apart around perimeter of openings. At intersecting and abutting walls, provide ties at no more than 24 inches (610 mm) o.c. vertically.
 - a. Where bed joints of wythes do not align, use adjustable (two-piece) type ties.
 - b. Where one wythe is of clay masonry and the other of concrete masonry, use adjustable (two-piece) type ties to allow for differential movement regardless of whether bed joints align.

- 2. Masonry Joint Reinforcement: Installed in horizontal mortar joints.
 - a. Where one wythe is of clay masonry and the other of concrete masonry, use adjustable (two-piece) type reinforcement to allow for differential movement regardless of whether bed joints align.
- 3. Masonry Veneer Anchors: Comply with requirements for anchoring masonry veneers.
- B. Bond wythes of cavity walls together using bonding system indicated on Drawings.
- C. Keep cavities clean of mortar droppings and other materials during construction. Bevel beds away from cavity, to minimize mortar protrusions into cavity. Do not attempt to trowel or remove mortar fins protruding into cavity.
- D. Parge cavity face of backup wythe in a single coat approximately 3/8 inch (10 mm) thick. Trowel face of parge coat smooth.
- E. Apply air barrier to face of backup wythe to comply with Division 07 Section 072419, WATER DRAINAGE EXTER`IOR INSULATION AND FINISH SYSTEM (EIFS).
- F. Installing Cavity-Wall Insulation: Place small dabs of adhesive, spaced approximately 12 inches (300 mm) o.c. both ways, on inside face of insulation boards, or attach with plastic fasteners designed for this purpose. Fit courses of insulation between wall ties and other confining obstructions in cavity, with edges butted tightly both ways. Press units firmly against inside wythe of masonry or other construction as shown.
 - 1. Fill cracks and open gaps in insulation with crack sealer compatible with insulation and masonry.

3.8 MASONRY JOINT REINFORCEMENT

- A. General: Install entire length of longitudinal side rods in mortar with a minimum cover of 5/8 inch (16 mm) on exterior side of walls, 1/2 inch (13 mm) elsewhere. Lap reinforcement a minimum of 6 inches (150 mm).
 - 1. Space reinforcement not more than 16 inches (406 mm) o.c.
 - 2. Space reinforcement not more than 8 inches (203 mm) o.c. in foundation walls and parapet walls.
 - 3. Provide reinforcement not more than 8 inches (203 mm) above and below wall openings and extending 12 inches (305 mm) beyond openings in addition to continuous reinforcement.
- B. Interrupt joint reinforcement at control and expansion joints unless otherwise indicated.
- C. Provide continuity at wall intersections by using prefabricated T-shaped units.
- D. Provide continuity at corners by using prefabricated L-shaped units.
- E. Cut and bend reinforcing units as directed by manufacturer for continuity at [corners,] returns, offsets, column fireproofing, pipe enclosures, and other special conditions.

3.9 ANCHORING MASONRY TO STRUCTURAL STEEL AND CONCRETE

- A. Anchor masonry to structural steel and concrete where masonry abuts or faces structural steel or concrete to comply with the following:
 - 1. Provide an open space not less than 1/2 inch (13 mm) wide between masonry and structural steel or concrete unless otherwise indicated. Keep open space free of mortar and other rigid materials.
 - 2. Anchor masonry with anchors embedded in masonry joints and attached to structure.
 - 3. Space anchors as indicated, but not more than 24 inches (610 mm) o.c. vertically and 36 inches (915 mm) o.c. horizontally.

3.10 ANCHORING MASONRY VENEERS

- A. Anchor masonry veneers to wall framing and concrete and masonry backup with masonry-veneer anchors to comply with the following requirements:
 - 1. Fasten screw-attached anchors through sheathing to wall framing and to masonry backup with metal fasteners of type indicated. Use two fasteners unless anchor design only uses one fastener.
 - 2. Embed tie sections in masonry joints. Provide not less than 2 inches (50 mm) of air space between back of masonry veneer and face of sheathing.
 - 3. Locate anchor sections to allow maximum vertical differential movement of ties up and down.
 - 4. Space anchors as indicated, but not more than 16 inches (406 mm) o.c. vertically and 24 inches (610 mm) o.c. horizontally with not less than 1 anchor for each 2.67 sq. ft. (0.25 sq. m) of wall area. Install additional anchors within 12 inches (305 mm) of openings and at intervals, not exceeding 36 inches (914 mm), around perimeter.

3.11 CONTROL AND EXPANSION JOINTS

- A. General: Install control and expansion joint materials in unit masonry as masonry progresses. Do not allow materials to span control and expansion joints without provision to allow for in-plane wall or partition movement.
- B. Form control joints in concrete masonry using one of the following methods:
 - 1. Fit bond-breaker strips into hollow contour in ends of CMUs on one side of control joint. Fill resultant core with grout and rake out joints in exposed faces for application of sealant.
 - 2. Install preformed control-joint gaskets designed to fit standard sash block.
 - 3. Install interlocking units designed for control joints. Install bond-breaker strips at joint. Keep head joints free and clear of mortar or rake out joint for application of sealant.
 - 4. Install temporary foam-plastic filler in head joints and remove filler when unit masonry is complete for application of sealant.
- C. Form expansion joints in brick as follows:
 - 1. Build flanges of metal expansion strips into masonry. Lap each joint 4 inches (100 mm) in direction of water flow. Seal joints below grade and at junctures with horizontal expansion joints if any.
 - 2. Build flanges of factory-fabricated, expansion-joint units into masonry.
 - 3. Build in compressible joint fillers where indicated.
 - 4. Form open joint full depth of brick wythe and of width indicated, but not less than 3/8 inch (10 mm) for installation of sealant and backer rod specified in Section 07 9200, JOINT SEALANTS.

3.12 LINTELS

- A. Install steel lintels where indicated.
- B. Provide concrete or masonry lintels where shown and where openings of more than 12 inches (305 mm) for brick-size units and 24 inches (610 mm) for block-size units are shown without structural steel or other supporting lintels.
- C. Provide minimum bearing of 8 inches (200 mm) at each jamb unless otherwise indicated.

3.13 FLASHING, WEEP HOLES, CAVITY DRAINAGE, AND VENTS

A. General: Install embedded flashing and weep holes in masonry at shelf angles, lintels, ledges, other obstructions to downward flow of water in wall, and where indicated. Install vents where indicated.

- B. Install flashing as follows unless otherwise indicated:
 - 1. Prepare masonry surfaces so they are smooth and free from projections that could puncture flashing. Where flashing is within mortar joint, place through-wall flashing on sloping bed of mortar and cover with mortar. Before covering with mortar, seal penetrations in flashing with adhesive, sealant, or tape as recommended by flashing manufacturer.
 - 2. At multiwythe masonry walls, including cavity walls, extend flashing through outer wythe, turned up a minimum of 8 inches (200 mm), and 1-1/2 inches (38 mm) into the inner wythe. Form 1/4-inch (6-mm) hook in edge of flashing embedded in inner wythe.
 - 3. Install metal drip edges beneath flexible flashing at exterior face of wall. Stop flexible flashing 1/2 inch (13 mm) back from outside face of wall and adhere flexible flashing to top of metal drip edge.
 - 4. Cut flexible flashing off flush with face of wall after masonry wall construction is completed.
- C. Install reglets and nailers for flashing and other related construction where they are shown to be built into masonry.
- D. Install weep holes in head joints in exterior wythes of first course of masonry immediately above embedded flashing and as follows:
 - 1. Use specified weep/vent products to form weep holes.
 - 2. Space weep holes 24 inches (600 mm) o.c. unless otherwise indicated.
- E. Place cavity drainage material in cavities to comply with configuration requirements for cavity drainage material in "Miscellaneous Masonry Accessories" Article.
- F. Install vents in head joints in exterior wythes at spacing indicated. Use specified weep/vent products to form vents.
 - 1. Close cavities off vertically and horizontally with blocking in manner indicated. Install throughwall flashing and weep holes above horizontal blocking.

3.14 REINFORCED UNIT MASONRY INSTALLATION

- A. Temporary Formwork and Shores: Construct formwork and shores as needed to support reinforced masonry elements during construction.
 - 1. Construct formwork to provide shape, line, and dimensions of completed masonry as indicated. Make forms sufficiently tight to prevent leakage of mortar and grout. Brace, tie, and support forms to maintain position and shape during construction and curing of reinforced masonry.
 - 2. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and other loads that may be placed on them during construction.
- B. Placing Reinforcement: Comply with requirements in ACI 530.1/ASCE 6/TMS 602.
- C. Grouting: Do not place grout until entire height of masonry to be grouted has attained enough strength to resist grout pressure.
 - 1. Comply with requirements in ACI 530.1/ASCE 6/TMS 602 for cleanouts and for grout placement, including minimum grout space and maximum pour height.
 - 2. Limit height of vertical grout pours to not more than 12.67 ft. (3.86 m).

3.15 FIELD QUALITY CONTROL

A. Testing and Inspecting: Owner will engage special inspectors to perform tests and inspections and prepare reports. Allow inspectors access to scaffolding and work areas, as needed to perform tests and inspections. Retesting of materials that fail to comply with specified requirements shall be done at Contractor's expense.

- B. Inspections: Level 1 special inspections according to the "International Building Code."
 - Begin masonry construction only after inspectors have verified proportions of site-prepared mortar.
 - 2. Place grout only after inspectors have verified compliance of grout spaces and of grades, sizes, and locations of reinforcement.
 - 3. Place grout only after inspectors have verified proportions of site-prepared grout.
- C. Testing Prior to Construction: One set of tests.
- D. Testing Frequency: One set of tests for each 5000 sq. ft. (464 sq. m) of wall area or portion thereof.
- E. Mortar Aggregate Ratio Test (Proportion Specification): For each mix provided, according to ASTM C 780.
- F. Prism Test: For each type of construction provided, according to ASTM C 1314 at 28 days.

3.16 REPAIRING, POINTING, AND CLEANING

- A. Remove and replace masonry units that are loose, chipped, broken, stained, or otherwise damaged or that do not match adjoining units. Install new units to match adjoining units; install in fresh mortar, pointed to eliminate evidence of replacement.
- B. Pointing: During the tooling of joints, enlarge voids and holes, except weep holes, and completely fill with mortar. Point up joints, including corners, openings, and adjacent construction, to provide a neat, uniform appearance. Prepare joints for sealant application, where indicated.
- C. In-Progress Cleaning: Clean unit masonry as work progresses by dry brushing to remove mortar fins and smears before tooling joints.
- D. Final Cleaning: After mortar is thoroughly set and cured, clean exposed masonry as follows:
 - 1. Remove large mortar particles by hand with wooden paddles and nonmetallic scrape hoes or chisels.
 - 2. Test cleaning methods on sample wall panel; leave one-half of panel uncleaned for comparison purposes. Obtain Architect's approval of sample cleaning before proceeding with cleaning of masonry.
 - 3. Protect adjacent stone and nonmasonry surfaces from contact with cleaner by covering them with liquid strippable masking agent or polyethylene film and waterproof masking tape.
 - 4. Wet wall surfaces with water before applying cleaners; remove cleaners promptly by rinsing surfaces thoroughly with clear water.
 - 5. Clean brick by bucket-and-brush hand-cleaning method described in BIA Technical Notes 20.
 - 6. Clean masonry with a proprietary acidic cleaner applied according to manufacturer's written instructions.
 - 7. Clean concrete masonry by cleaning method indicated in NCMA TEK 8-2A applicable to type of stain on exposed surfaces.
 - 8. Clean stone trim to comply with stone supplier's written instructions.

3.17 MASONRY WASTE DISPOSAL

- A. Salvageable Materials: Unless otherwise indicated, excess masonry materials are Contractor's property. At completion of unit masonry work, remove from Project site.
- B. Waste Disposal as Fill Material: Dispose of clean masonry waste, including excess or soil-contaminated sand, waste mortar, and broken masonry units, by crushing and mixing with fill material as fill is placed.
 - 1. Crush masonry waste to less than 4 inches (100 mm) in each dimension.

- 2. Mix masonry waste with at least two parts of specified fill material for each part of masonry waste.
- 3. Do not dispose of masonry waste as fill within 18 inches (450 mm) of finished grade.
- C. Excess Masonry Waste: Remove excess clean masonry waste that cannot be used as fill, as described above, and other masonry waste, and legally dispose of off Owner's property.

END OF SECTION 04 2000

SECTION 047200 - CAST STONE MASONRY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cast stone trim.
- B. Related Sections:
 - 1. Section 042000 "Unit Masonry" for installing cast stone units in unit masonry.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
 - 1. For cast stone units, include construction details, material descriptions, dimensions of individual components and profiles, and finishes.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For manufacturer.
- B. Material Test Reports: For each mix required to produce cast stone, based on testing according to ASTM C 1364, including test for resistance to freezing and thawing.
 - 1. Provide test reports based on testing within previous two years.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications: A qualified manufacturer of cast stone units similar to those indicated for this Project, that has sufficient production capacity to manufacture required units, and is a plant certified by the Cast Stone Institute.
- B. Source Limitations for Cast Stone: Obtain cast stone units through single source from single manufacturer.
- C. Source Limitations for Mortar Materials: Obtain mortar ingredients of a uniform quality, including color, from one manufacturer for each cementitious component and from one source or producer for each aggregate.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Coordinate delivery of cast stone with unit masonry work to avoid delaying the Work and to minimize the need for on-site storage.
- B. Pack, handle, and ship cast stone units in suitable packs or pallets.
 - 1. Lift with wide-belt slings; do not use wire rope or ropes that might cause staining. Move cast stone units, if required, using dollies with wood supports.

- 2. Store cast stone units on wood skids or pallets with nonstaining, waterproof covers, securely tied. Arrange to distribute weight evenly and to prevent damage to units. Ventilate under covers to prevent condensation.
- C. Store cementitious materials on elevated platforms, under cover, and in a dry location. Do not use cementitious materials that have become damp.
- D. Store mortar aggregates where grading and other required characteristics can be maintained and contamination can be avoided.

1.7 PROJECT CONDITIONS

- A. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen substrates. Comply with cold-weather construction requirements in ACI 530.1/ASCE 6/TMS 602.
 - 1. Cold-Weather Cleaning: Use liquid cleaning methods only when air temperature is 40 deg F (4 deg C) and above and will remain so until cast stone has dried, but no fewer than seven days after completing cleaning.
- B. Hot-Weather Requirements: Comply with hot-weather construction requirements in ACI 530.1/ASCE 6/TMS 602.

PART 2 - PRODUCTS

2.1 CAST STONE MATERIALS

- A. Portland Cement: ASTM C 150, Type I or Type III, containing not more than 0.60 percent total alkali when tested according to ASTM C 114. Provide natural color or white cement as required to produce cast stone color indicated.
- B. Fine Aggregates: Natural sand or crushed stone complying with ASTM C 33, gradation and colors as needed to produce required cast stone textures and colors.
- C. Color Pigment: ASTM C 979, synthetic mineral-oxide pigments or colored water-reducing admixtures; color stable, nonfading, and resistant to lime and other alkalis.
- D. Admixtures: Use only admixtures specified or approved in writing by Architect.
 - 1. Do not use admixtures that contain more than 0.1 percent water-soluble chloride ions by mass of cementitious materials. Do not use admixtures containing calcium chloride.
 - 2. Use only admixtures that are certified by manufacturer to be compatible with cement and other admixtures used.
 - 3. Air-Entraining Admixture: ASTM C 260. Add to mixes for units exposed to the exterior at manufacturer's prescribed rate to result in an air content of 4 to 6 percent, except do not add to zero-slump concrete mixes.
 - 4. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
 - 5. Water-Reducing, Retarding Admixture: ASTM C 494/C 494M, Type D.
 - 6. Water-Reducing, Accelerating Admixture: ASTM C 494/C 494M, Type E.
- E. Reinforcement: Deformed steel bars complying with ASTM A 615/A 615M, Grade 60 (Grade 420). Use galvanized or epoxy-coated reinforcement when covered with less than 1-1/2 inches (38 mm) of cast stone material.
 - 1. Epoxy Coating: ASTM A 775/A 775M.
 - 2. Galvanized Coating: ASTM A 767/A 767M.

F. Embedded Anchors and Other Inserts: Fabricated from stainless steel complying with ASTM A 240/A 240M, ASTM A 276, or ASTM A 666, Type 304.

2.2 CAST STONE UNITS

- A. Provide cast stone units complying with ASTM C 1364 using either the vibrant dry tamp or wet-cast method.
 - 1. Provide units that are resistant to freezing and thawing as determined by laboratory testing according to ASTM C 666/C 666M, Procedure A, as modified by ASTM C 1364.
- B. Fabricate units with sharp arris and accurately reproduced details, with indicated texture on all exposed surfaces unless otherwise indicated.
 - 1. Slope exposed horizontal surfaces 1:12 to drain unless otherwise indicated.
 - 2. Provide raised fillets at backs of sills and at ends indicated to be built into jambs.
 - 3. Provide drips on projecting elements unless otherwise indicated.

C. Fabrication Tolerances:

- 1. Variation in Cross Section: Do not vary from indicated dimensions by more than 1/8 inch (3 mm).
- 2. Variation in Length: Do not vary from indicated dimensions by more than 1/360 of the length of unit or 1/8 inch (3 mm), whichever is greater, but in no case by more than 1/4 inch (6 mm).
- 3. Warp, Bow, and Twist: Not to exceed 1/360 of the length of unit or 1/8 inch (3 mm), whichever is greater.
- 4. Location of Grooves, False Joints, Holes, Anchorages, and Similar Features: Do not vary from indicated position by more than 1/8 inch (3 mm) on formed surfaces of units and 3/8 inch (10 mm) on unformed surfaces.

D. Cure units as follows:

- 1. Cure units in enclosed moist curing room at 95 to 100 percent relative humidity and temperature of 100 deg F (38 deg C) for 12 hours or 70 deg F (21 deg C) for 16 hours.
- 2. Keep units damp and continue curing to comply with one of the following:
 - a. No fewer than five days at mean daily temperature of 70 deg F (21 deg C) or above.
 - b. No fewer than six days at mean daily temperature of 60 deg F (16 deg C) or above.
 - c. No fewer than seven days at mean daily temperature of 50 deg F (10 deg C) or above.
 - d. No fewer than eight days at mean daily temperature of 45 deg F (7 deg C) or above.
- E. Acid etch units after curing to remove cement film from surfaces to be exposed to view.
- F. Colors and Textures: Match existing concrete band at exterior of the existing building.

2.3 ACCESSORIES

- A. Anchors: Type and size indicated, fabricated from Type 304 stainless steel complying with ASTM A 240/A 240M, ASTM A 276, or ASTM A 666.
- B. Dowels: 1/2-inch- (12-mm-) diameter, round bars, fabricated from Type 304 stainless steel complying with ASTM A 240/A 240M, ASTM A 276, or ASTM A 666.

2.4 MORTAR MIXES

A. Comply with requirements in Section 042000 "Unit Masonry" for mortar mixes.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SETTING CAST STONE IN MORTAR

- A. Install cast stone units to comply with requirements in Section 042000 "Unit Masonry."
- B. Set cast stone as indicated on Drawings. Set units accurately in locations indicated with edges and faces aligned according to established relationships and indicated tolerances.
 - 1. Install anchors, supports, fasteners, and other attachments indicated or necessary to secure units in place.
 - 2. Coordinate installation of cast stone with installation of flashing specified in other Sections.
- C. Wet joint surfaces thoroughly before applying mortar or setting in mortar.
- D. Set units in full bed of mortar with full head joints unless otherwise indicated.
 - 1. Set units with joints 3/8 to 1/2 inch (10 to 13 mm) wide unless otherwise indicated.
 - 2. Build anchors and ties into mortar joints as units are set.
 - 3. Fill dowel holes and anchor slots with mortar.
 - 4. Fill collar joints solid as units are set.
 - 5. Build concealed flashing into mortar joints as units are set.
 - 6. Keep head joints in coping and other units with exposed horizontal surfaces open to receive sealant.
 - 7. Keep joints at shelf angles open to receive sealant.
- E. Rake out joints for pointing with mortar to depths of not less than 3/4 inch (19 mm). Rake joints to uniform depths with square bottoms and clean sides. Scrub faces of units to remove excess mortar as joints are raked.
- F. Point mortar joints by placing and compacting mortar in layers not greater than 3/8 inch (10 mm). Compact each layer thoroughly and allow it to become thumbprint hard before applying next layer.
- G. Tool exposed joints slightly concave when thumbprint hard, using a jointer larger than joint thickness unless otherwise indicated.
- H. Provide sealant joints at copings and other horizontal surfaces, at expansion, control, and pressure-relieving joints, and at locations indicated.
 - 1. Keep joints free of mortar and other rigid materials.
 - 2. Build in compressible foam-plastic joint fillers where indicated.
 - 3. Form joint of width indicated, but not less than 3/8 inch (10 mm).
 - 4. Prime cast stone surfaces to receive sealant and install compressible backer rod in joints before applying sealant unless otherwise indicated.
 - 5. Prepare and apply sealant of type and at locations indicated to comply with applicable requirements in Section 079200 "Joint Sealants."

3.3 INSTALLATION TOLERANCES

A. Variation from Plumb: Do not exceed 1/8 inch in 10 feet (3 mm in 3 m), 1/4 inch in 20 feet (6 mm in 6 m), or 1/2 inch (12 mm) maximum.

- B. Variation from Level: Do not exceed 1/8 inch in 10 feet (3 mm in 3 m), 1/4 inch in 20 feet (6 mm in 6 m), or 1/2 inch (12 mm) maximum.
- C. Variation in Joint Width: Do not vary joint thickness more than 1/8 inch in 36 inches (3 mm in 900 mm) or one-fourth of nominal joint width, whichever is less.
- D. Variation in Plane between Adjacent Surfaces (Lipping): Do not vary from flush alignment with adjacent units or adjacent surfaces indicated to be flush with units by more than 1/16 inch (1.5 mm), except where variation is due to warpage of units within tolerances specified.

3.4 ADJUSTING AND CLEANING

- A. Remove and replace stained and otherwise damaged units and units not matching approved Samples. Cast stone may be repaired if methods and results are approved by Architect.
- B. Replace units in a manner that results in cast stone matching approved Samples, complying with other requirements, and showing no evidence of replacement.
- C. In-Progress Cleaning: Clean cast stone as work progresses.
 - 1. Remove mortar fins and smears before tooling joints.
 - 2. Remove excess sealant immediately, including spills, smears, and spatter.

END OF SECTION 047200

SECTION 051200 - STRUCTURAL STEEL FRAMING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Structural steel.
- 2. Field-installed shear connectors.
- 3. Grout.

B. Related Requirements:

- 1. Section 053100 "Steel Decking" for field installation of shear connectors through deck.
- 2. Section 055000 "Metal Fabrications" for steel lintels and shelf angles not attached to structural-steel frame, miscellaneous steel fabrications and other steel items not defined as structural steel.
- 3. Section 099113 "Exterior Painting" and Section 099123 "Interior Painting" for surface-preparation and priming requirements.

1.3 DEFINITIONS

A. Structural Steel: Elements of the structural frame indicated on Drawings and as described in AISC 303, "Code of Standard Practice for Steel Buildings and Bridges."

1.4 COORDINATION

- A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written recommendations to ensure that shop primers and topcoats are compatible with one another.
- B. Coordinate installation of anchorage items to be embedded in or attached to other construction without delaying the Work. Provide setting diagrams, sheet metal templates, instructions, and directions for installation.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Show fabrication and erection of structural-steel components.
 - 1. Include plans, sections, and details for erection of structural steel components.
 - 2. Include details of cuts, connections, splices, camber, holes, and other pertinent data.
 - 3. Include embedment Drawings.
 - 4. Indicate welds by standard AWS symbols, distinguishing between shop and field welds, and show size, length, and type of each weld. Show backing bars that are to be removed and supplemental fillet welds where backing bars are to remain.
 - 5. Indicate type, size, and length of bolts, distinguishing between shop and field bolts. Identify pretensioned and slip-critical, high-strength bolted connections.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer, fabricator, shop-painting applicators and testing agency.
- B. Welding certificates.
- C. Paint Compatibility Certificates: From manufacturers of topcoats applied over shop primers, certifying that shop primers are compatible with topcoats.
- D. Survey of existing conditions.
- E. Field quality-control and special inspection reports.

1.7 QUALITY ASSURANCE

- A. Fabricator Qualifications: A qualified fabricator that participates in the AISC Quality Certification Program and is designated an AISC-Certified Plant, Category STD.
- B. Installer Qualifications: A qualified installer who participates in the AISC Quality Certification Program and is designated an AISC-Certified Erector, Category CSE.
- C. Shop-Painting Applicators: Qualified according to AISC's Sophisticated Paint Endorsement P1 or to SSPC-QP 3, "Standard Procedure for Evaluating Qualifications of Shop Painting Applicators."
- D. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- E. Comply with applicable provisions of the following specifications and documents:
 - 1. AISC 303.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Store materials to permit easy access for inspection and identification. Keep steel members off ground and spaced by using pallets, dunnage, or other supports and spacers. Protect steel members and packaged materials from corrosion and deterioration.
 - 1. Do not store materials on structure in a manner that might cause distortion, damage, or overload to members or supporting structures. Repair or replace damaged materials or structures as directed.
- B. Store fasteners in a protected place in sealed containers with manufacturer's labels intact.
 - 1. Fasteners may be repackaged provided Owner's testing and inspecting agency observes repackaging and seals containers.
 - 2. Clean and relubricate bolts and nuts that become dry or rusty before use.
 - 3. Comply with manufacturers' written recommendations for cleaning and lubricating ASTM F 1852 fasteners and for retesting fasteners after lubrication.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Construction: Masonry shear walls supporting secondary steel beams and slabs.

2.2 STRUCTURAL-STEEL MATERIALS

A. W-Shapes: ASTM A 992/A 992M, Grade 50 (345).

- B. Channels, Angles, M, S-Shapes: ASTM A 36/A 36M.
- C. Plate and Bar: ASTM A 36/A 36M.
- D. Cold-Formed Hollow Structural Sections: ASTM A 500/A 500M, Grade B, structural tubing.
- E. Steel Pipe: ASTM A 53/A 53M, Type E or Type S, Grade B.
 - 1. Weight Class: Standard, Extra strong, or Double-extra strong as noted.
 - 2. Finish: Black except where indicated to be galvanized.
- F. Steel Castings: ASTM A 216/A 216M, Grade WCB with supplementary requirement S11.
- G. Steel Forgings: ASTM A 668/A 668M.
- H. Welding Electrodes: Comply with AWS requirements.

2.3 BOLTS, CONNECTORS, AND ANCHORS

- A. High-Strength Bolts, Nuts, and Washers: ASTM A 325 (ASTM A 325M), Type 1, heavy-hex steel structural bolts; ASTM A 563, Grade C, (ASTM A 563M, Class 8S) heavy-hex carbon-steel nuts; and ASTM F 436 (ASTM F 436M), Type 1, hardened carbon-steel washers; all with plain finish.
- B. Shear Connectors: ASTM A 108, Grades 1015 through 1020, headed-stud type, cold-finished carbon steel; AWS D1.1/D1.1M, Type B.
- C. Headed Anchor Rods: ASTM F 1554, Grade 36, straight.
 - 1. Nuts: ASTM A 563 (ASTM A 563M) hex carbon steel.
 - 2. Plate Washers: ASTM A 36/A 36M carbon steel.
 - 3. Washers: ASTM F 436 (ASTM F 436M), Type 1, hardened carbon steel.
 - 4. Finish: Plain.
- D. Threaded Rods: ASTM A 36/A 36M.
 - 1. Nuts: ASTM A 563 (ASTM A 563M) hex carbon steel.
 - 2. Washers: ASTM F 436 (ASTM F 436M), Type 1, hardened carbon steel.
 - 3. Finish: Plain.
- E. Sleeve Nuts: Made from cold-finished carbon steel bars, ASTM A 108, Grade 1018.

2.4 PRIMER

A. Primer: Fabricator's standard lead- and chromate-free, nonasphaltic, rust-inhibiting primer complying with MPI#79 and compatible with topcoat.

2.5 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107/C 1107M, factory-packaged, nonmetallic aggregate grout, noncorrosive and nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

2.6 FABRICATION

- A. Structural Steel: Fabricate and assemble in shop to greatest extent possible. Fabricate according to AISC 303, "Code of Standard Practice for Steel Buildings and Bridges," and to AISC 360.
 - 1. Camber structural-steel members where indicated.
 - 2. Fabricate beams with rolling camber up.

- 3. Identify high-strength structural steel according to ASTM A 6/A 6M and maintain markings until structural steel has been erected.
- 4. Mark and match-mark materials for field assembly.
- 5. Complete structural-steel assemblies, including welding of units, before starting shop-priming operations.
- B. Thermal Cutting: Perform thermal cutting by machine to greatest extent possible.
 - 1. Plane thermally cut edges to be welded to comply with requirements in AWS D1.1/D1.1M.
- C. Bolt Holes: Cut, drill, or punch standard bolt holes perpendicular to metal surfaces.
- D. Finishing: Accurately finish ends of columns and other members transmitting bearing loads.
- E. Cleaning: Clean and prepare steel surfaces that are to remain unpainted according to SSPC-SP 1, "Solvent Cleaning."
- F. Shear Connectors: Prepare steel surfaces as recommended by manufacturer of shear connectors. Use automatic end welding of headed-stud shear connectors according to AWS D1.1/D1.1M and manufacturer's written instructions.
- G. Holes: Provide holes required for securing other work to structural steel and for other work to pass through steel members.
 - 1. Cut, drill, or punch holes perpendicular to steel surfaces.
 - 2. Baseplate Holes: Cut, drill, mechanically thermal cut, or punch holes perpendicular to steel surfaces.
 - 3. Weld threaded nuts to framing and other specialty items indicated to receive other work.

2.7 SHOP CONNECTIONS

- A. High-Strength Bolts: Shop install high-strength bolts according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts" for type of bolt and type of joint specified.
 - 1. Joint Type: Snug tightened.
- B. Weld Connections: Comply with AWS D1.1/D1.1M for tolerances, appearances, welding procedure specifications, weld quality, and methods used in correcting welding work.

2.8 SHOP PRIMING

- A. Shop prime steel surfaces except the following:
 - 1. Surfaces embedded in concrete or mortar. Extend priming of partially embedded members to a depth of 2 inches (50 mm).
 - 2. Surfaces to be field welded.
 - 3. Surfaces to receive sprayed fire-resistive materials (applied fireproofing).
 - 4. Galvanized surfaces.
- B. Surface Preparation: Clean surfaces to be painted. Remove loose rust and mill scale and spatter, slag, or flux deposits. Prepare surfaces according to the following specifications and standards:
 - 1. SSPC-SP 2, "Hand Tool Cleaning."
- C. Priming: Immediately after surface preparation, apply primer according to manufacturer's written instructions and at rate recommended by SSPC to provide a minimum dry film thickness of 1.5 mils (0.038 mm). Use priming methods that result in full coverage of joints, corners, edges, and exposed surfaces.
 - 1. Stripe paint corners, crevices, bolts, welds, and sharp edges.

2. Apply two coats of shop paint to surfaces that are inaccessible after assembly or erection. Change color of second coat to distinguish it from first.

2.9 GALVANIZING

- A. Hot-Dip Galvanized Finish: Apply zinc coating by the hot-dip process to structural steel according to ASTM A 123/A 123M.
 - 1. Fill vent and drain holes that are exposed in the finished Work unless they function as weep holes, by plugging with zinc solder and filing off smooth.
 - Galvanize lintels and shelf angles attached or un-attached to structural-steel frame and located in exterior walls.

2.10 SOURCE QUALITY CONTROL

- A. Testing Agency: Contractor will engage a qualified testing agency to perform shop tests and inspections.
 - 1. Provide testing agency with access to places where structural-steel work is being fabricated or produced to perform tests and inspections.
- B. Bolted Connections: Inspect shop-bolted connections according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."
- C. Welded Connections: Visually inspect shop-welded connections according to AWS D1.1/D1.1M.
- D. In addition to visual inspection, test and inspect shop-welded shear connectors according to requirements in AWS D1.1/D1.1M for stud welding and as follows:
 - 1. Perform bend tests if visual inspections reveal either a less-than-continuous 360-degree flash or welding repairs to any shear connector.
 - 2. Conduct tests according to requirements in AWS D1.1/D1.1M on additional shear connectors if weld fracture occurs on shear connectors already tested.
- E. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify, with certified steel erector present, elevations of concrete- and masonry-bearing surfaces and locations of anchor rods, bearing plates, and other embedments for compliance with requirements.
 - 1. Prepare a certified survey of existing conditions. Include bearing surfaces, anchor rods, bearing plates, and other embedments showing dimensions, locations, angles, and elevations.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Provide temporary shores, guys, braces, and other supports during erection to keep structural steel secure, plumb, and in alignment against temporary construction loads and loads equal in intensity to design loads. Remove temporary supports when permanent structural steel, connections, and bracing are in place unless otherwise indicated.
 - 1. Do not remove temporary shoring supporting composite deck construction until cast-in-place concrete has attained its design compressive strength.

3.3 ERECTION

- A. Set structural steel accurately in locations and to elevations indicated and according to AISC 303 and AISC 360.
- B. Baseplates, Bearing Plates and Leveling Plates: Clean concrete- and masonry-bearing surfaces of bond-reducing materials, and roughen surfaces prior to setting plates. Clean bottom surface of plates.
 - 1. Set plates for structural members on wedges, shims, or setting nuts as required.
 - 2. Weld plate washers to top of baseplate.
 - 3. Snug-tighten anchor rods after supported members have been positioned and plumbed. Do not remove wedges or shims but, if protruding, cut off flush with edge of plate before packing with grout.
 - 4. Promptly pack grout solidly between bearing surfaces and plates so no voids remain. Neatly finish exposed surfaces; protect grout and allow to cure. Comply with manufacturer's written installation instructions for shrinkage-resistant grouts.
- C. Maintain erection tolerances of structural steel within AISC 303, "Code of Standard Practice for Steel Buildings and Bridges."
- D. Align and adjust various members that form part of complete frame or structure before permanently fastening. Before assembly, clean bearing surfaces and other surfaces that are in permanent contact with members. Perform necessary adjustments to compensate for discrepancies in elevations and alignment.
 - 1. Level and plumb individual members of structure.
- E. Splice members only where indicated.
- F. Do not use thermal cutting during erection unless approved by Architect. Finish thermally cut sections within smoothness limits in AWS D1.1/D1.1M.
- G. Do not enlarge unfair holes in members by burning or using drift pins. Ream holes that must be enlarged to admit bolts.
- H. Shear Connectors: Prepare steel surfaces as recommended by manufacturer of shear connectors. Use automatic end welding of headed-stud shear connectors according to AWS D1.1/D1.1M and manufacturer's written instructions.

3.4 FIELD CONNECTIONS

- A. High-Strength Bolts: Install high-strength bolts according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts" for type of bolt and type of joint specified.
 - 1. Joint Type: Snug tightened.
- B. Weld Connections: Comply with AWS D1.1/D1.1M for tolerances, appearances, welding procedure specifications, weld quality, and methods used in correcting welding work.
 - 1. Comply with AISC 303 and AISC 360 for bearing, alignment, adequacy of temporary connections, and removal of paint on surfaces adjacent to field welds.
 - 2. Remove backing bars or runoff tabs where indicated, back gouge, and grind steel smooth.
 - 3. Assemble and weld built-up sections by methods that maintain true alignment of axes without exceeding tolerances in AISC 303, "Code of Standard Practice for Steel Buildings and Bridges," for mill material.

3.5 FIELD QUALITY CONTROL

A. Special Inspections: Contractor will engage a qualified special inspector to perform the following special inspections:

- 1. Verify structural-steel materials and inspect steel frame joint details.
- 2. Verify weld materials and inspect welds.
- 3. Verify connection materials and inspect high-strength bolted connections.
- B. Testing Agency: Contractor will engage a qualified testing agency to perform tests and inspections.
- C. Bolted Connections: Inspect bolted connections according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."
- D. Welded Connections: Visually inspect field welds according to AWS D1.1/D1.1M.
 - 1. In addition to visual inspection, test and inspect field welds according to AWS D1.1/D1.1M.
- E. In addition to visual inspection, test and inspect field-welded shear connectors according to requirements in AWS D1.1/D1.1M for stud welding and as follows:
 - 1. Perform bend tests if visual inspections reveal either a less-than-continuous 360-degree flash or welding repairs to any shear connector.

3.6 REPAIRS AND PROTECTION

- A. Galvanized Surfaces: Clean areas where galvanizing is damaged or missing and repair galvanizing to comply with ASTM A 780/A 780M.
- B. Touchup Painting: Immediately after erection, clean exposed areas where primer is damaged or missing and paint with the same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.
 - 1. Clean and prepare surfaces by SSPC-SP 2 hand-tool cleaning or SSPC-SP 3 power-tool cleaning.
- C. Touchup Priming: Cleaning and touchup priming are specified in Section 099600 "High-Performance Coatings."

END OF SECTION 051200

SECTION 053100 - STEEL DECKING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Roof deck.
- 2. Composite floor deck.
- 3. Noncomposite form deck.

B. Related Requirements:

- Section 033000 "Cast-in-Place Concrete" for normal-weight and lightweight structural concrete fill over steel deck.
- 2. Section 051200 "Structural Steel Framing" for shop- and field-welded shear connectors.
- 3. Section 055000 "Metal Fabrications" for framing deck openings with miscellaneous steel shapes.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of deck, accessory, and product indicated. Data must include manufacturer's standard load tables indicating that structural capacities as indicated in PERFORMANCE REQUIREMENTS are satisfied.

B. Shop Drawings:

1. Include layout and types of deck panels, anchorage details, reinforcing channels, pans, cut deck openings, special jointing, accessories, and attachments to other construction.

1.4 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Product Certificates: For each type of steel deck.
- C. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Qualified according to ASTM E 329 for testing indicated.
- B. Welding Qualifications: Qualify procedures and personnel according to AWS D1.3, "Structural Welding Code Sheet Steel."
- C. FM Global Listing: Provide steel roof deck evaluated by FM Global and listed in its "Approval Guide, Building Materials" for Class 1 fire rating and Class 1-90 windstorm ratings.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Protect steel deck from corrosion, deformation, and other damage during delivery, storage, and handling.

B. Stack steel deck on platforms or pallets and slope to provide drainage. Protect with a waterproof covering and ventilate to avoid condensation.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. AISI Specifications: Comply with calculated structural characteristics of steel deck according to AISI's "North American Specification for the Design of Cold-Formed Steel Structural Members."
- B. Structural Capacities:
 - 1. All deck shall be capable of supporting the loads indicated below, based on an unshored span condition with a total load deflection limited to L/240 of the span length.
 - 2. Roof Deck shall safely support a minimum total (dead plus live) load of 30 psf over a span of five (5.0) feet.
 - 3. Non-Composite Form Deck shall safely support a minimum total (dead plus live) load of 150 psf over a span of four (4.0) feet. Total slab thickness shall vary with reinforcement as shown on the Drawings.
 - 4. Composite Floor Deck shall safely support a minimum superimposed live load of 100 psf over a span of five (5.0) feet. Total slab thickness and reinforcing is shown on the Drawings.
- C. Fire-Resistance Ratings: Comply with ASTM E 119; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Indicate design designations from UL's "Fire Resistance Directory" or from the listings of another qualified testing agency.

2.2 ROOF DECK

- A. Roof Deck: Fabricate panels, without top-flange stiffening grooves, to comply with "SDI Specifications and Commentary for Steel Roof Deck," in SDI Publication No. 31, and with the following:
 - 1. Galvanized-Steel Sheet: ASTM A 653/A 653M, Structural Steel (SS), Grade 33 (230), G60 (Z180) zinc coating.
 - 2. Deck Profile: As indicated.
 - 3. Profile Depth: As indicated.
 - 4. Design Uncoated-Steel Thickness: As indicated.
 - 5. Span Condition: As indicated.
 - 6. Side Laps: Overlapped or interlocking seam at Contractor's option.

2.3 COMPOSITE FLOOR DECK

- A. Composite Floor Deck: Fabricate panels, with integrally embossed or raised pattern ribs and interlocking side laps, to comply with "SDI Specifications and Commentary for Composite Steel Floor Deck," in SDI Publication No. 31, with the minimum section properties indicated, and with the following:
 - 1. Galvanized-Steel Sheet: ASTM A 653/A 653M, Structural Steel (SS), Grade 33 (230), G60 (Z180) zinc coating.
 - 2. Profile Depth: As indicated.
 - 3. Design Uncoated-Steel Thickness: As indicated.
 - 4. Span Condition: As indicated.

2.4 NONCOMPOSITE FORM DECK

A. Noncomposite Form Deck: Fabricate ribbed-steel sheet noncomposite form-deck panels to comply with "SDI Specifications and Commentary for Noncomposite Steel Form Deck," in SDI Publication No. 31, with the minimum section properties indicated, and with the following:

- 1. Galvanized-Steel Sheet: ASTM A 653/A 653M, Structural Steel (SS), Grade 33 (230) G60 (Z180) zinc coating.
- 2. Profile Depth: As indicated.
- 3. Design Uncoated-Steel Thickness: As indicated.
- 4. Span Condition: As indicated.
- 5. Side Laps: Overlapped or interlocking seam at Contractor's option.

2.5 ACCESSORIES

- A. General: Provide manufacturer's standard accessory materials for deck that comply with requirements indicated.
- B. Mechanical Fasteners: Corrosion-resistant, low-velocity, power-actuated or pneumatically driven carbon-steel fasteners; or self-drilling, self-threading screws.
- C. Side-Lap Fasteners: Corrosion-resistant, hexagonal washer head; self-drilling, carbon-steel screws, No. 10 (4.8-mm) minimum diameter.
- D. Flexible Closure Strips: Vulcanized, closed-cell, synthetic rubber.
- E. Miscellaneous Sheet Metal Deck Accessories: Steel sheet, minimum yield strength of 33,000 psi (230 MPa), not less than 0.0359-inch (0.91-mm) design uncoated thickness, of same material and finish as deck; of profile indicated or required for application.
- F. Pour Stops and Girder Fillers: Steel sheet, minimum yield strength of 33,000 psi (230 MPa), of same material and finish as deck, and of thickness and profile indicated or as recommended by SDI Publication No. 31 for overhang and slab depth, whichever is thicker.
- G. Column Closures, End Closures, Z-Closures, and Cover Plates: Steel sheet, of same material, finish, and thickness as deck unless otherwise indicated.
- H. Piercing Hanger Tabs: Piercing steel sheet hanger attachment devices for use with floor deck.
- I. Galvanizing Repair Paint: ASTM A 780.
- J. Repair Paint: Manufacturer's standard rust-inhibitive primer of same color as primer.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine supporting frame and field conditions for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

- A. Install deck panels and accessories according to applicable specifications and commentary in SDI Publication No. 31, manufacturer's written instructions, and requirements in this Section.
- B. Install temporary shoring before placing deck panels if required to meet deflection limitations.
- C. Locate deck bundles to prevent overloading of supporting members.

- D. Place deck panels on supporting frame and adjust to final position with ends accurately aligned and bearing on supporting frame before being permanently fastened. Do not stretch or contract side-lap interlocks.
- E. Place deck panels flat and square and fasten to supporting frame without warp or deflection.
- F. Cut and neatly fit deck panels and accessories around openings and other work projecting through or adjacent to deck.
- G. Provide additional reinforcement and closure pieces at openings as required for strength, continuity of deck, and support of other work.
- H. Comply with AWS requirements and procedures for manual shielded metal arc welding, appearance and quality of welds, and methods used for correcting welding work.
- I. Mechanical fasteners may be used in lieu of welding to fasten deck. Locate mechanical fasteners and install according to deck manufacturer's written instructions.

3.3 ROOF-DECK INSTALLATION

- A. Fasten roof-deck panels to steel supporting members by arc spot (puddle) welds of the surface diameter indicated or arc seam welds with an equal perimeter that is not less than 1-1/2 inches (38 mm) long, and as follows:
 - 1. Weld Diameter: 5/8 inch (16 mm), nominal.
 - 2. Weld Spacing: Weld edge and interior ribs of deck units with a minimum of two welds per deck unit at each support. Space welds 12 inches (305 mm) apart in the field of roof and 6 inches (150 mm) apart in roof corners and perimeter, based on roof-area definitions in FMG Loss Prevention Data Sheet 1-28.
- B. Side-Lap and Perimeter Edge Fastening: Fasten side laps and perimeter edges of panels between supports, at intervals not exceeding the lesser of 1/2 of the span or 18 inches (457 mm), and as follows:
 - 1. Mechanically fasten with self-drilling, No. 10 (4.8-mm-) diameter or larger, carbon-steel screws.
- C. End Bearing: Install deck ends over supporting frame with a minimum end bearing of 1-1/2 inches (38 mm), with end joints as follows:
 - 1. End Joints: Lapped 2 inches (51 mm) minimum or butted at Contractor's option.
- D. Alternate methods of deck attachment may be offered by the Contractor as a substitution to the attachments defined herein or on the Drawings. Alternate methods of attachment must offer at least the same load capacity (diaphragm shear, uplift, gravity) as that offered by the indicated attachment system.
- E. Miscellaneous Roof-Deck Accessories: Install ridge and valley plates, finish strips, end closures, and reinforcing channels according to deck manufacturer's written instructions. Weld or mechanically fasten to substrate to provide a complete deck installation.
 - 1. Weld cover plates at changes in direction of roof-deck panels unless otherwise indicated.
- F. Flexible Closure Strips: Install flexible closure strips over partitions, walls, and where indicated. Install with adhesive according to manufacturer's written instructions to ensure complete closure.

3.4 FLOOR-DECK INSTALLATION

- A. Fasten floor-deck panels to steel supporting members by arc spot (puddle) welds of the surface diameter indicated and as follows:
 - 1. Weld Diameter: 5/8 inch (16 mm), nominal.

- 2. Weld Spacing: Weld edge ribs of panels at each support. Space additional welds an average of 12 inches (305 mm) apart, but not more than 18 inches (457 mm) apart.
- B. Side-Lap and Perimeter Edge Fastening: Fasten side laps and perimeter edges of panels between supports, at intervals not exceeding the lesser of half of the span or 36 inches (914 mm), and as follows:
 - 1. Mechanically fasten with self-drilling, No. 10 (4.8-mm-) diameter or larger, carbon-steel screws.
- C. End Bearing: Install deck ends over supporting frame with a minimum end bearing of 1-1/2 inches (38 mm), with end joints as follows:
 - 1. End Joints: Lapped or butted at Contractor's option.
- D. Alternate methods of deck attachment may be offered by the Contractor as a substitution to the attachments defined herein or on the Drawings. Alternate methods of attachment must offer at least the same load capacity (diaphragm shear, uplift, gravity) as that offered by the indicated attachment system.
- E. Pour Stops and Girder Fillers: Weld steel sheet pour stops and girder fillers to supporting structure according to SDI recommendations unless otherwise indicated.
- F. Floor-Deck Closures: Weld steel sheet column closures, cell closures, and Z-closures to deck, according to SDI recommendations, to provide tight-fitting closures at open ends of ribs and sides of deck.
- G. If required by the ceiling system, install piercing hanger tabs at 24 inches (610 mm) apart in both directions, within 9 inches (228 mm) of walls at ends, and not more than 12 inches (305 mm) from walls at sides unless otherwise indicated.

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Contractor will engage a qualified testing agency to perform tests and inspections.
- B. Field welds will be subject to inspection.
- C. Testing agency will report inspection results promptly and in writing to Contractor and Architect.
- D. Remove and replace work that does not comply with specified requirements.
- E. Additional inspecting, at Contractor's expense, will be performed to determine compliance of corrected work with specified requirements.

3.6 PROTECTION

- A. Galvanizing Repairs: Prepare and repair damaged galvanized coatings on both surfaces of deck with galvanized repair paint according to ASTM A 780 and manufacturer's written instructions.
- B. Repair Painting: Wire brushing, cleaning, and repair painting of rust spots, welds, and abraded areas of both deck surfaces are included in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."
- C. Provide final protection and maintain conditions to ensure that steel deck is without damage or deterioration at time of Substantial Completion.

END OF SECTION 053100

SECTION 05 5000 - METAL FABRICATIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- Steel framing and supports for applications where framing and supports are not specified in other Sections.
- 2. Elevator machine beams and hoist beams.
- 3. Steel shapes for supporting elevator door sills.
- 4. Metal ladders.

B. Products furnished, but not installed, under this Section:

- 1. Loose steel lintels.
- 2. Anchor bolts, steel pipe sleeves, slotted-channel inserts, and wedge-type inserts indicated to be cast into concrete or built into unit masonry.
- 3. Steel weld plates and angles for casting into concrete for applications where they are not specified in other Sections.

C. Related Sections:

- 1. Section 03 3000, CAST-IN-PLACE CONCRETE, for installing anchor bolts, steel pipe sleeves, slotted-channel inserts, wedge-type inserts, and other items cast into concrete.
- 2. Section 04 2000, UNIT MASONRY, for installing loose lintels, anchor bolts, and other items built into unit masonry.
- 3. Section 05 1200, STRUCTURAL STEEL FRAMING.

1.3 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Design ladders, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- B. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes acting on exterior metal fabrications by preventing buckling, opening of joints, overstressing of components, failure of connections, and other detrimental effects.
 - 1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Paint products.
 - 2. Grout.
- B. Shop Drawings: Show fabrication and installation details for metal fabrications.
 - Include plans, elevations, sections, and details of metal fabrications and their connections. Show anchorage and accessory items.
- C. Paint Compatibility Certificates: From manufacturers of topcoats applied over shop primers certifying that shop primers are compatible with topcoats.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel."
 - 2. AWS D1.2/D1.2M, "Structural Welding Code Aluminum."
 - 3. AWS D1.6, "Structural Welding Code Stainless Steel."

1.6 PROJECT CONDITIONS

A. Field Measurements: Verify actual locations of walls and other construction contiguous with metal fabrications by field measurements before fabrication.

1.7 COORDINATION

- A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written recommendations to ensure that shop primers and topcoats are compatible with one another.
- B. Coordinate installation of anchorages and steel weld plates and angles for casting into concrete. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

PART 2 - PRODUCTS

2.1 METALS, GENERAL

A. Metal Surfaces, General: Provide materials with smooth, flat surfaces unless otherwise indicated. For metal fabrications exposed to view in the completed Work, provide materials without seam marks, roller marks, rolled trade names, or blemishes.

2.2 FERROUS METALS

- A. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
- B. Steel Tubing: ASTM A 500, cold-formed steel tubing.
- C. Steel Pipe: ASTM A 53/A 53M, standard weight (Schedule 40) unless otherwise indicated.
- D. Slotted Channel Framing: Cold-formed metal box channels (struts) complying with MFMA-4.
 - 1. Size of Channels: 1-5/8 by 1-5/8 inches (41 by 41 mm).
 - 2. Material: Galvanized steel, ASTM A 653/A 653M, commercial steel, Type B, with G90 (Z275) coating; 0.108-inch (2.8-mm) nominal thickness.
- E. Cast Iron: Either gray iron, ASTM A 48/A 48M, or malleable iron, ASTM A 47/A 47M, unless otherwise indicated.

2.3 NONFERROUS METALS

- A. Aluminum Plate and Sheet: ASTM B 209 (ASTM B 209M), Alloy 6061-T6.
- B. Aluminum Extrusions: ASTM B 221 (ASTM B 221M), Alloy 6063-T6.

- C. Aluminum-Alloy Rolled Tread Plate: ASTM B 632/B 632M, Alloy 6061-T6.
- D. Aluminum Castings: ASTM B 26/B 26M, Alloy 443.0-F.

2.4 FASTENERS

- A. General: Unless otherwise indicated, provide Type 304 stainless-steel fasteners for exterior use and zincplated fasteners with coating complying with ASTM B 633 or ASTM F 1941 (ASTM F 1941M), Class Fe/Zn 5, at exterior walls. Select fasteners for type, grade, and class required.
 - 1. Provide stainless-steel fasteners for fastening aluminum.
 - 2. Provide stainless-steel fasteners for fastening stainless steel.
- B. Steel Bolts and Nuts: Regular hexagon-head bolts, ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6); with hex nuts, ASTM A 563 (ASTM A 563M); and, where indicated, flat washers.
- C. Steel Bolts and Nuts: Regular hexagon-head bolts, ASTM A 325, Type 3 (ASTM A 325M, Type 3); with hex nuts, ASTM A 563, Grade C3 (ASTM A 563M, Class 8S3); and, where indicated, flat washers.
- D. Stainless-Steel Bolts and Nuts: Regular hexagon-head annealed stainless-steel bolts, ASTM F 593 (ASTM F 738M); with hex nuts, ASTM F 594 (ASTM F 836M); and, where indicated, flat washers; Alloy Group 1 (A1).
- E. Anchor Bolts: ASTM F 1554, Grade 36, of dimensions indicated; with nuts, ASTM A 563; and, where indicated, flat washers.
 - 1. Hot-dip galvanize or provide mechanically deposited, zinc coating where item being fastened is indicated to be galvanized.
- F. Eyebolts: ASTM A 489.
- G. Machine Screws: ASME B18.6.3 (ASME B18.6.7M).
- H. Lag Screws: ASME B18.2.1 (ASME B18.2.3.8M).
- I. Wood Screws: Flat head, ASME B18.6.1.
- J. Plain Washers: Round, ASME B18.22.1 (ASME B18.22M).
- K. Lock Washers: Helical, spring type, ASME B18.21.1 (ASME B18.21.2M).
- L. Anchors, General: Anchors capable of sustaining, without failure, a load equal to six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete, as determined by testing according to ASTM E 488, conducted by a qualified independent testing agency.
- M. Cast-in-Place Anchors in Concrete: Either threaded type or wedge type unless otherwise indicated; galvanized ferrous castings, either ASTM A 47/A 47M malleable iron or ASTM A 27/A 27M cast steel. Provide bolts, washers, and shims as needed, all hot-dip galvanized per ASTM F 2329.
- N. Post-Installed Anchors: Torque-controlled expansion anchors or chemical anchors.
 - 1. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B 633 or ASTM F 1941 (ASTM F 1941M), Class Fe/Zn 5, unless otherwise indicated.
 - 2. Material for Exterior Locations and Where Stainless Steel is Indicated: Alloy Group 1 (A1) stainless-steel bolts, ASTM F 593 (ASTM F 738M), and nuts, ASTM F 594 (ASTM F 836M).
- O. Slotted-Channel Inserts: Cold-formed, hot-dip galvanized-steel box channels (struts) complying with MFMA-4, 1-5/8 by 7/8 inches (41 by 22 mm) by length indicated with anchor straps or studs not less than

3 inches (75 mm) long at not more than 8 inches (200 mm) o.c. Provide with temporary filler and tee-head bolts, complete with washers and nuts, all zinc-plated to comply with ASTM B 633, Class Fe/Zn 5, as needed for fastening to inserts.

2.5 MISCELLANEOUS MATERIALS

- A. Welding Rods and Bare Electrodes: Select according to AWS specifications for metal alloy welded.
- B. Shop Primers: Provide primers that comply with Division 09 painting Sections.
- C. Universal Shop Primer: Fast-curing, lead- and chromate-free, universal modified-alkyd primer complying with MPI#79 and compatible with topcoat.
 - 1. Use primer containing pigments that make it easily distinguishable from zinc-rich primer.
- D. Epoxy Zinc-Rich Primer: Complying with MPI#20 and compatible with topcoat.
- E. Galvanizing Repair Paint: High-zinc-dust-content paint complying with SSPC-Paint 20 and compatible with paints specified to be used over it.
- F. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187.
- G. Nonshrink, Metallic Grout: Factory-packaged, ferrous-aggregate grout complying with ASTM C 1107, specifically recommended by manufacturer for heavy-duty loading applications.
- H. Nonshrink, Nonmetallic Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107. Provide grout specifically recommended by manufacturer for interior and exterior applications.
- I. Concrete: Comply with requirements in Section 03 3000, CAST-IN-PLACE CONCRETE, for normal-weight, air-entrained, concrete with a minimum 28-day compressive strength of 3000 psi (20 MPa).

2.6 FABRICATION, GENERAL

- A. Shop Assembly: Preassemble items in the shop to greatest extent possible. Disassemble units only as necessary for shipping and handling limitations. Use connections that maintain structural value of joined pieces. Clearly mark units for reassembly and coordinated installation.
- B. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inch (1 mm) unless otherwise indicated. Remove sharp or rough areas on exposed surfaces.
- C. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.
- D. Form exposed work with accurate angles and surfaces and straight edges.
- E. Weld corners and seams continuously to comply with the following:
 - Use materials and methods that minimize distortion and develop strength and corrosion resistance
 of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.

- F. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners or welds where possible. Where exposed fasteners are required, use Phillips flat-head (countersunk) fasteners unless otherwise indicated. Locate joints where least conspicuous.
- G. Fabricate seams and other connections that will be exposed to weather in a manner to exclude water. Provide weep holes where water may accumulate.
- H. Cut, reinforce, drill, and tap metal fabrications as indicated to receive finish hardware, screws, and similar items.
- I. Provide for anchorage of type indicated; coordinate with supporting structure. Space anchoring devices to secure metal fabrications rigidly in place and to support indicated loads.
 - 1. Where units are indicated to be cast into concrete or built into masonry, equip with integrally welded steel strap anchors, 1/8 by 1-1/2 inches (3.2 by 38 mm), with a minimum 6-inch (150-mm) embedment and 2-inch (50-mm) hook, not less than 8 inches (200 mm) from ends and corners of units and 24 inches (600 mm) o.c., unless otherwise indicated.

2.7 MISCELLANEOUS FRAMING AND SUPPORTS

- A. General: Provide steel framing and supports not specified in other Sections as needed to complete the Work.
- B. Fabricate units from steel shapes, plates, and bars of welded construction unless otherwise indicated. Fabricate to sizes, shapes, and profiles indicated and as necessary to receive adjacent construction.
 - 1. Fabricate units from slotted channel framing where indicated.
 - 2. Furnish inserts for units installed after concrete is placed.
- C. Fabricate steel girders for wood frame construction from continuous steel shapes of sizes indicated.
 - 1. Provide bearing plates welded to beams where indicated.
 - 2. Drill or punch girders and plates for field-bolted connections where indicated.
 - 3. Where wood nailers are attached to girders with bolts or lag screws, drill or punch holes at 24 inches (600 mm) o.c.
- D. Fabricate steel pipe columns for supporting wood frame construction from steel pipe with steel baseplates and top plates as indicated. Drill or punch baseplates and top plates for anchor and connection bolts and weld to pipe with fillet welds all around. Make welds the same size as pipe wall thickness unless otherwise indicated.
 - 1. Unless otherwise indicated, fabricate from Schedule 40 steel pipe.
 - 2. Unless otherwise indicated, provide 1/2-inch (12.7-mm) baseplates with four 5/8-inch (16-mm) anchor bolts and 1/4-inch (6.4-mm) top plates.
- E. Galvanize miscellaneous framing and supports where indicated.

2.8 METAL LADDERS

- A. General:
 - 1. Comply with ANSI A14.3 unless otherwise indicated.
 - 2. For elevator pit ladders, comply with ASME A17.1.
- B. Steel Ladders:
 - 1. Space siderails 18 inches (457 mm) apart unless otherwise indicated.
 - 2. Space siderails of elevator pit ladders 12 inches (300 mm) apart.
 - 3. Siderails: Continuous, 3/8-by-2-1/2-inch (9.5-by-64-mm) steel flat bars, with eased edges.
 - 4. Rungs: 1-inch- (25-mm-) diameter steel bars.
 - a. Rungs shall be 7 inches (178 mm) from wall, minimum.

- 5. Fit rungs in centerline of siderails; plug-weld and grind smooth on outer rail faces.
- 6. Provide nonslip surfaces on top of each rung, either by coating rung with aluminum-oxide granules set in epoxy-resin adhesive or by using a type of manufactured rung filled with aluminum-oxide grout.
- 7. Provide nonslip surfaces on top of each rung by coating with abrasive material metallically bonded to rung.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) IKG Industries, a division of Harsco Corporation; Mebac.
 - 2) SlipNOT Metal Safety Flooring, a W. S. Molnar company; SlipNOT.
- 8. Support each ladder at top and bottom and not more than 60 inches (1500 mm) o.c. with welded or bolted steel brackets.
- 9. Galvanize exterior ladders, including brackets and fasteners.
- 10. Prime exterior ladders, including brackets and fasteners, with zinc-rich primer.

2.9 MISCELLANEOUS STEEL TRIM

- A. Unless otherwise indicated, fabricate units from steel shapes, plates, and bars of profiles shown with continuously welded joints and smooth exposed edges. Miter corners and use concealed field splices where possible.
- B. Provide cutouts, fittings, and anchorages as needed to coordinate assembly and installation with other work.
 - 1. Provide with integrally welded steel strap anchors for embedding in concrete or masonry construction.
- C. Galvanize exterior miscellaneous steel trim.
- D. Prime exterior miscellaneous steel trim with zinc-rich primer.

2.10 LOOSE BEARING AND LEVELING PLATES

- A. Provide loose bearing and leveling plates for steel items bearing on masonry or concrete construction. Drill plates to receive anchor bolts and for grouting.
- B. Galvanize plates.
- C. Prime plates with zinc-rich primer.

2.11 LOOSE STEEL LINTELS

- A. Fabricate loose steel lintels from steel angles and shapes of size indicated for openings and recesses in masonry walls and partitions at locations indicated. Fabricate in single lengths for each opening unless otherwise indicated. Weld adjoining members together to form a single unit where indicated.
- B. Size loose lintels to provide bearing length at each side of openings equal to 1/12 of clear span but not less than 8 inches (200 mm) unless otherwise indicated.
- C. Galvanize loose steel lintels located in exterior walls.
- D. Prime loose steel lintels located in exterior walls with zinc-rich primer.

2.12 STEEL WELD PLATES AND ANGLES

A. Provide steel weld plates and angles not specified in other Sections, for items supported from concrete construction as needed to complete the Work. Provide each unit with no fewer than two integrally welded steel strap anchors for embedding in concrete.

2.13 FINISHES, GENERAL

- A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
- B. Finish metal fabrications after assembly.
- Finish exposed surfaces to remove tool and die marks and stretch lines, and to blend into surrounding surface.

2.14 STEEL AND IRON FINISHES

- A. Galvanizing: Hot-dip galvanize items as indicated to comply with ASTM A 153/A 153M for steel and iron hardware and with ASTM A 123/A 123M for other steel and iron products.
 - 1. Do not quench or apply post galvanizing treatments that might interfere with paint adhesion.
- B. Shop prime iron and steel items not indicated to be galvanized unless they are to be embedded in concrete, sprayed-on fireproofing, or masonry, or unless otherwise indicated.
 - 1. Shop prime with universal shop primer.
- C. Preparation for Shop Priming: Prepare surfaces to comply with requirements indicated below:
 - 1. Exterior Items: SSPC-SP 6/NACE No. 3, "Commercial Blast Cleaning."
 - 2. Items Indicated to Receive Zinc-Rich Primer: SSPC-SP 6/NACE No. 3, "Commercial Blast Cleaning."
 - 3. Items Indicated to Receive Primers Specified in Division 09 Section "High-Performance Coatings": SSPC-SP 6/NACE No. 3, "Commercial Blast Cleaning."
 - 4. Other Items: SSPC-SP 3, "Power Tool Cleaning."
- D. Shop Priming: Apply shop primer to comply with SSPC-PA 1, "Paint Application Specification No. 1: Shop, Field, and Maintenance Painting of Steel," for shop painting.
 - 1. Stripe paint corners, crevices, bolts, welds, and sharp edges.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal fabrications. Set metal fabrications accurately in location, alignment, and elevation; with edges and surfaces level, plumb, true, and free of rack; and measured from established lines and levels.
- B. Fit exposed connections accurately together to form hairline joints. Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations. Do not weld, cut, or abrade surfaces of exterior units that have been hot-dip galvanized after fabrication and are for bolted or screwed field connections.
- C. Field Welding: Comply with the following requirements:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.

- 3. Remove welding flux immediately.
- 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.
- D. Fastening to In-Place Construction: Provide anchorage devices and fasteners where metal fabrications are required to be fastened to in-place construction. Provide threaded fasteners for use with concrete and masonry inserts, toggle bolts, through bolts, lag screws, wood screws, and other connectors.
- E. Provide temporary bracing or anchors in formwork for items that are to be built into concrete, masonry, or similar construction.
- F. Corrosion Protection: Coat concealed surfaces of aluminum that will come into contact with grout, concrete, masonry, wood, or dissimilar metals with the following:
 - 1. Cast Aluminum: Heavy coat of bituminous paint.
 - 2. Extruded Aluminum: Two coats of clear lacquer.

3.2 INSTALLING MISCELLANEOUS FRAMING AND SUPPORTS

- A. General: Install framing and supports to comply with requirements of items being supported, including manufacturers' written instructions and requirements indicated on Shop Drawings.
- B. Anchor supports for operable partitions securely to and rigidly brace from building structure.
- C. Support steel girders on solid grouted masonry, concrete, or steel pipe columns. Secure girders with anchor bolts embedded in grouted masonry or concrete or with bolts through top plates of pipe columns.
 - 1. Where grout space under bearing plates is indicated for girders supported on concrete or masonry, install as specified in "Installing Bearing and Leveling Plates" Article.
- D. Install pipe columns on concrete footings with grouted baseplates. Position and grout column baseplates as specified in "Installing Bearing and Leveling Plates" Article.
 - 1. Grout baseplates of columns supporting steel girders after girders are installed and leveled.

3.3 INSTALLING BEARING AND LEVELING PLATES

- A. Clean concrete and masonry bearing surfaces of bond-reducing materials, and roughen to improve bond to surfaces. Clean bottom surface of plates.
- B. Set bearing and leveling plates on wedges, shims, or leveling nuts. After bearing members have been positioned and plumbed, tighten anchor bolts. Do not remove wedges or shims but, if protruding, cut off flush with edge of bearing plate before packing with grout.
 - 1. Use nonshrink grout, either metallic or nonmetallic, in concealed locations where not exposed to moisture; use nonshrink, nonmetallic grout in exposed locations unless otherwise indicated.
 - 2. Pack grout solidly between bearing surfaces and plates to ensure that no voids remain.

3.4 ADJUSTING AND CLEANING

- A. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas. Paint uncoated and abraded areas with the same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.
 - 1. Apply by brush or spray to provide a minimum 2.0-mil (0.05-mm) dry film thickness.
- B. Touchup Painting: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint are specified in Division 09 painting Sections.

Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and repair galvanizing to comply with ASTM A 780. C. END OF SECTION 05 5000

SECTION 06 1600 - SHEATHING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Wall sheathing.
 - 2. Sheathing joint-and-penetration treatment.
 - 3. Flexible flashing at openings in sheathing.
- B. Related Sections include the following:
 - 1. Section 06 1000, ROUGH CARPENTRY, for plywood backing panels.

1.3 SUBMITTALS

- A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.
 - 1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated plywood complies with requirements. Indicate type of preservative used and net amount of preservative retained.
 - 2. Include data for fire-retardant treatment from chemical treatment manufacturer and certification by treating plant that treated plywood complies with requirements. Include physical properties of treated materials.
 - 3. For fire-retardant treatments specified to be High-Temperature (HT) type, include physical properties of treated plywood both before and after exposure to elevated temperatures, based on testing by a qualified independent testing agency according to ASTM D 5516.
 - 4. For products receiving a waterborne treatment, include statement that moisture content of treated materials was reduced to levels specified before shipment to Project site.
 - 5. Include copies of warranties from chemical treatment manufacturers for each type of treatment.
 - 6. For building wrap, include data on air-/moisture-infiltration protection based on testing according to referenced standards.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Stack plywood and other panels flat with spacers between each bundle to provide air circulation. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 WALL SHEATHING

- A. Glass-Mat Gypsum Wall Sheathing: ASTM C 1177/1177M.
 - 1. Product: Subject to compliance with requirements, provide "Dens-Glass Gold" by G-P Gypsum Corporation.
 - 2. Type and Thickness: Type X, 5/8 inch (15.9 mm) thick.
 - 3. Size: 48 by 96 inches (1219 by 2438 mm), 48 by 108 inches (1219 by 2743 mm), or 48 by 120 inches (1219 by 3048 mm) for vertical installation.

2.2 FASTENERS

- A. General: Provide fasteners of size and type indicated that comply with requirements specified in this Article for material and manufacture.
 - 1. For sheathing, provide fasteners with hot-dip zinc coating complying with ASTM A 153/A 153M.
- B. Power-Driven Fasteners: NES NER-272.
- C. Screws for Fastening Gypsum Sheathing to Cold-Formed Metal Framing: Steel drill screws, in length recommended by sheathing manufacturer for thickness of sheathing board to be attached, with organic-polymer or other corrosion-protective coating having a salt-spray resistance of more than 800 hours according to ASTM B 117.
 - 1. For steel framing less than 0.0329 inch (0.835 mm) thick, attach sheathing to comply with ASTM C 1002.
 - 2. For steel framing from 0.033 to 0.112 inch (0.84 to 2.84 mm) thick, attach sheathing to comply with ASTM C 954.

2.3 SHEATHING JOINT-AND-PENETRATION TREATMENT MATERIALS

A. Sheathing Tape for Glass-Mat Gypsum Sheathing Board: Self-adhering glass-fiber tape, minimum 2 inches (50 mm) wide, 10 by 10 or 10 by 20 threads/inch (390 by 390 or 390 by 780 threads/m), of type recommended by sheathing and tape manufacturers for use with silicone emulsion sealant in sealing joints in glass-mat gypsum sheathing board and with a history of successful in-service use.

2.4 MISCELLANEOUS MATERIALS

- A. Flexible Flashing: Composite, self-adhesive, flashing product consisting of a pliable, rubberized-asphalt compound, bonded to a high-density, cross-laminated polyethylene film to produce an overall thickness of not less than 0.030 inch (0.8 mm).
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Carlisle Coatings & Waterproofing; CCW-705-TWF Thru-Wall Flashing.
 - b. Grace Construction Products, a unit of W. R. Grace & Co. Conn.; Vycor Plus Self-Adhered Flashing or Vycor V40 Weather Barrier Strips.
 - c. Protecto Wrap Company; BT-20 XL or PS-45.
- B. Primer for Flexible Flashing: Product recommended by manufacturer of flexible flashing for substrate.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Do not use materials with defects that impair quality of sheathing or pieces that are too small to use with minimum number of joints or optimum joint arrangement.
- B. Cut panels at penetrations, edges, and other obstructions of work; fit tightly against abutting construction, unless otherwise indicated.
- C. Securely attach to substrate by fastening as indicated, complying with the following:
 - 1. NES NER-272 for power-driven fasteners.
 - 2. Table 2304.9.1, "Fastening Schedule," in ICC's "International Building Code."
 - 3. Table R602.3(1), "Fastener Schedule for Structural Members," and Table R602.3(2), "Alternate Attachments," in ICC's "International Residential Code for One- and Two-Family Dwellings."

- D. Select fasteners of size that will not fully penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections. Install fasteners without splitting wood.
- E. Coordinate wall sheathing installation with flashing and joint-sealant installation so these materials are installed in sequence and manner that prevent exterior moisture from passing through completed assembly.
- F. Do not bridge building expansion joints; cut and space edges of panels to match spacing of structural support elements.
- G. Coordinate sheathing installation with installation of materials installed over sheathing so sheathing is not exposed to precipitation or left exposed at end of the workday when rain is forecast.

3.2 GYPSUM SHEATHING INSTALLATION

- A. Comply with GA-253 and with manufacturer's written instructions.
 - 1. Fasten gypsum sheathing to cold-formed metal framing with screws.
 - 2. Install boards with a 3/8-inch (9.5-mm) gap where non-load-bearing construction abuts structural elements.
 - 3. Install boards with a 1/4-inch (6.4-mm) gap where they abut masonry or similar materials that might retain moisture, to prevent wicking.
- B. Apply fasteners so heads bear tightly against face of sheathing boards but do not cut into facing.
- C. Horizontal Installation: Install sheathing with V-grooved edge down and tongue edge up. Interlock tongue with groove to bring long edges in contact with edges of adjacent boards without forcing. Abut ends of boards over centers of studs, and stagger end joints of adjacent boards not less than one stud spacing. Attach boards at perimeter and within field of board to each steel stud.
 - 1. Space fasteners approximately 8 inches (200 mm) o.c. and set back a minimum of 3/8 inch (9.5 mm) from edges and ends of boards.
 - 2. For sheathing under stucco cladding, boards may be initially tacked in place with screws if overlying self-furring metal lath is screw-attached through sheathing to studs immediately after sheathing is installed.
- D. Vertical Installation: Install board vertical edges centered over studs. Abut ends and edges of each board with those of adjacent boards. Attach boards at perimeter and within field of board to each stud.
 - 1. Space fasteners approximately 8 inches (200 mm) o.c. and set back a minimum of 3/8 inch (9.5 mm) from edges and ends of boards.
 - 2. For sheathing under stucco cladding, boards may be initially tacked in place with screws if overlying self-furring metal lath is screw-attached through sheathing to study immediately after sheathing is installed.

3.3 SHEATHING JOINT-AND-PENETRATION TREATMENT

- A. Seal sheathing joints according to sheathing manufacturer's written instructions.
 - 1. Apply elastomeric sealant to joints and fasteners and trowel flat. Apply sufficient quantity of sealant to completely cover joints and fasteners after troweling. Seal other penetrations and openings.
 - 2. Apply glass-fiber sheathing tape to glass-mat gypsum sheathing board joints, and apply and trowel silicone emulsion sealant to embed entire face of tape in sealant. Apply sealant to exposed fasteners with a trowel so fasteners are completely covered. Seal other penetrations and openings.
 - 3. Apply sheathing tape to joints between foam-plastic sheathing panels and at items penetrating sheathing. Apply at upstanding flashing to overlap both flashing and sheathing.

3.4 FLEXIBLE FLASHING INSTALLATION

- A. Apply flexible flashing where indicated to comply with manufacturers written instructions.
 - 1. Prime substrates as recommended by flashing manufacturer.
 - 2. Lap seams and junctures with other materials at least 4 inches (100 mm), except that at flashing flanges of other construction, laps need not exceed flange width.
 - 3. Lap flashing over weather-resistant building paper at bottom and sides of openings.
 - 4. Lap weather-resistant building paper over flashing at heads of openings.
 - 5. After flashing has been applied, roll surfaces with a hard rubber or metal roller to ensure that flashing is completely adhered to substrates.

END OF SECTION 06 1600

SECTION 07 1416 - COLD FLUID-APPLIED WATERPROOFING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Single-component polyurethane waterproofing.
 - 2. Two-component polyurethane waterproofing.
 - 3. Polyester waterproofing.
 - Insulation.
- B. Related Section:
 - 1. Section 07 9000, JOINT SEALANTS, for joint-sealant materials and installation.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include manufacturer's written instructions for evaluating, preparing, and treating substrate, technical data, and tested physical and performance properties of waterproofing.
- B. Shop Drawings: Show locations and extent of waterproofing. Include details for substrate joints and cracks, sheet flashings, penetrations, inside and outside corners, tie-ins with adjoining waterproofing, and other termination conditions.
 - 1. Include setting drawings showing layout, sizes, sections, profiles, and joint details of pedestal-supported concrete pavers.
- C. Samples: For the following products:
 - 1. Flashing sheet, 10 by 8 inches (250 by 200 mm).
 - 2. Membrane-reinforcing fabric, 10 by 8 inches (250 by 200 mm).
 - 3. Insulation, 10 by 8 inches (250 by 200 mm).
 - 4. Drainage panel, 4 by 4 inches (100 by 100 mm).
- D. Field quality-control reports.
- E. Warranty: Sample of special warranty.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: A firm that is approved or licensed by waterproofing manufacturer for installation of waterproofing required for this Project.
- B. Source Limitations: Obtain waterproofing materials and protection course from single source from single manufacturer.
- C. Preinstallation Conference: Conduct conference at Project site.
 - 1. Review waterproofing requirements including surface preparation, substrate condition and pretreatment, minimum curing period, forecasted weather conditions, special details and flashings, installation procedures, testing and inspection procedures, and protection and repairs.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Deliver liquid materials to Project site in original containers with seals unbroken, labeled with manufacturer's name, product brand name and type, date of manufacture, shelf life, and directions for storing and mixing with other components.
- B. Store liquid materials in their original undamaged containers in a clean, dry, protected location and within the temperature range required by waterproofing manufacturer.
- C. Remove and replace liquid materials that cannot be applied within their stated shelf life.
- D. Protect stored materials from direct sunlight.

1.6 PROJECT CONDITIONS

- A. Environmental Limitations: Apply waterproofing within the range of ambient and substrate temperatures recommended by waterproofing manufacturer. Do not apply waterproofing to a damp or wet substrate, when relative humidity exceeds 85 percent, or when temperatures are less than 5 deg F (3 deg C) above dew point.
 - 1. Do not apply waterproofing in snow, rain, fog or mist, or when such weather conditions are imminent during application and curing period.
- B. Maintain adequate ventilation during application and curing of waterproofing materials.

1.7 WARRANTY

- A. Special Manufacturer's Warranty: Waterproofing manufacturer and Installer agree to repair or replace waterproofing that does not comply with requirements or that fails to remain watertight within specified warranty period.
 - 1. Warranty does not include failure of waterproofing due to failure of substrate prepared and treated according to requirements or formation of new joints and cracks in substrate that exceed 1/16 inch (1.6 mm) in width.
 - 2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SINGLE-COMPONENT POLYURETHANE WATERPROOFING

- A. Single-Component, Modified Polyurethane Waterproofing: Comply with ASTM C 836 and with manufacturer's written physical requirements.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Anti-Hydro International, Inc.; A-H Seamless Membrane.
 - b. Carlisle Coatings & Waterproofing Inc.; CCW-525.
 - c. CETCO; LDC 60.
 - d. Degussa Building Systems; HLM 5000.
 - e. Tremco Incorporated; Tremproof 60, Vulkem 250 GC, or Vulkem 201.

2.2 AUXILIARY MATERIALS

- A. General: Provide auxiliary materials recommended by manufacturer to be compatible with one another and with waterproofing, as demonstrated by waterproofing manufacturer, based on testing and field experience.
- B. Primer: Manufacturer's standard, factory-formulated polyurethane or epoxy primer.

- C. Sheet Flashing: 50-mil- (1.3-mm-) minimum, nonstaining, uncured sheet neoprene.
 - 1. Adhesive: Manufacturer's recommended contact adhesive.
- D. Membrane-Reinforcing Fabric: Nonwoven, needle-punched white polyester fabric, manufacturer's standard weight.
- E. Joint Reinforcing Strip: Manufacturer's recommended fiberglass mesh or polyester fabric.
- F. Joint Sealant: Multicomponent polyurethane sealant, compatible with waterproofing, complying with ASTM C 920 Type M, Class 25; Grade NS for sloping and vertical applications or Grade P for deck applications; Use NT exposure; and as recommended by manufacturer for substrate and joint conditions.
 - 1. Backer Rod: Closed-cell polyethylene foam.

2.3 PROTECTION COURSE

- A. Protection Course: ASTM D 6506, semirigid sheets of fiberglass or mineral-reinforced-asphaltic core, pressure laminated between two asphalt-saturated fibrous liners and as follows:
 - 1. Thickness: 1/8 inch (3 mm), nominal.
 - 2. Adhesive: Rubber-based solvent type recommended by waterproofing manufacturer for type of protection course.

2.4 INSULATION

- A. Board Insulation: Extruded-polystyrene board insulation complying with ASTM C 578, shiplap edged.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. DiversiFoam Products.
 - b. Dow Chemical Company (The).
 - c. Owens Corning.
 - 2. Type IV, 25-psi (173-kPa) minimum compressive strength.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements and other conditions affecting performance.
 - Verify that concrete has cured and aged for minimum time period recommended by waterproofing manufacturer.
 - 2. Verify that substrate is visibly dry and free of moisture. Test for capillary moisture by plastic sheet method according to ASTM D 4263.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SURFACE PREPARATION

- A. Clean and prepare substrate according to manufacturer's written recommendations. Provide clean, dust-free, and dry substrate for waterproofing application.
- B. Mask off adjoining surfaces not receiving waterproofing to prevent spillage or overspray affecting other construction.
- C. Close off deck drains and other deck penetrations to prevent spillage and migration of waterproofing fluids.

- D. Remove grease, oil, bitumen, form-release agents, paints, curing compounds, acid residues, and other penetrating contaminants or film-forming coatings from concrete.
 - 1. Abrasive blast clean concrete surfaces uniformly to expose top surface of fine aggregate according to ASTM D 4259 with a self-contained, recirculating, blast-cleaning apparatus. Remove material to provide a sound surface free of laitance, glaze, efflorescence, curing compounds, concrete hardeners, or form-release agents. Remove remaining loose material and clean surfaces according to ASTM D 4258.
- E. Remove fins, ridges, and other projections and fill honeycomb, aggregate pockets, and other voids.

3.3 PREPARATION AT TERMINATIONS AND PENETRATIONS

- A. Prepare vertical and horizontal surfaces at terminations and penetrations through waterproofing and at expansion joints, drains, and sleeves according to ASTM C 898 and manufacturer's written instructions.
- B. Prime substrate unless otherwise instructed by waterproofing manufacturer.
- C. Apply waterproofing in two separate applications, and embed a joint reinforcing strip in the first preparation coat when recommended by waterproofing manufacturer.
 - 1. Provide sealant cants around penetrations and at inside corners of deck-to-wall butt joints when recommended by waterproofing manufacturer.

3.4 JOINT AND CRACK TREATMENT

- A. Prepare, treat, rout, and fill joints and cracks in substrate according to ASTM C 898 and waterproofing manufacturer's written instructions. Remove dust and dirt from joints and cracks, complying with ASTM D 4258, before coating surfaces.
 - 1. Comply with ASTM C 1193 for joint-sealant installation.
 - 2. Apply bond breaker between sealant and preparation strip.
 - 3. Prime substrate and apply a single thickness of preparation strip extending a minimum of 3 inches (75 mm) along each side of joint. Apply waterproofing in two separate applications and embed a joint reinforcing strip in the first preparation coat.
- B. Install sheet flashing and bond to deck and wall substrates where indicated or required according to waterproofing manufacturer's written instructions.
 - 1. Extend sheet flashings onto perpendicular surfaces and other work penetrating substrate according to ASTM C 898.

3.5 WATERPROOFING APPLICATION

- A. Apply waterproofing according to ASTM C 898 and manufacturer's written instructions.
- B. Start installing waterproofing in presence of manufacturer's technical representative.
- C. Apply primer over prepared substrate.
- D. Unreinforced Waterproofing Applications: Mix materials and apply waterproofing by spray, roller, notched squeegee, trowel, or other application method suitable to slope of substrate.
 - 1. Apply one or more coats of waterproofing to obtain a seamless membrane free of entrapped gases, with an average dry film thickness of 60 mils (1.5 mm) and a minimum dry film thickness of 50 mils (1.3 mm) at any point.
 - 2. Apply waterproofing to prepared wall terminations and vertical surfaces.
 - 3. Verify wet film thickness of waterproofing every 100 sq. ft. (9.3 sq. m).

E. Install protection course with butted joints over nominally cured membrane before starting subsequent construction operations.

3.6 INSULATION INSTALLATION

- A. Install insulation drainage panels over waterproofed surfaces. Cut and fit to within 3/4 inch (19 mm) of projections and penetrations.
- B. On vertical surfaces, set insulation units in adhesive applied according to manufacturer's written instructions. Use type of adhesive recommended in writing by insulation manufacturer.

3.7 FIELD QUALITY CONTROL

A. Engage a full time site representative qualified by the waterproofing membrane manufacturer to inspect substrate conditions, surface preparation, and application of the membrane, flashings, protection, and drainage components; and to furnish daily reports to Architect.

3.8 CURING, PROTECTION, AND CLEANING

- A. Cure waterproofing according to manufacturer's written recommendations, taking care to prevent contamination and damage during application stages and curing.
 - 1. Do not permit foot or vehicular traffic on unprotected membrane.
- B. Protect waterproofing from damage and wear during remainder of construction period.
- C. Protect installed board insulation from damage due to ultraviolet light, harmful weather exposures, physical abuse, and other causes. Immediately after installation, provide temporary coverings where insulation will be subject to abuse and cannot be concealed and protected by permanent construction.
- D. Clean spillage and soiling from adjacent construction using cleaning agents and procedures recommended by manufacturer of affected construction.

END OF SECTION 07 1416

SECTION 07 2419 - WATER-DRAINAGE EXTERIOR INSULATION AND FINISH SYSTEM (EIFS)

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes water-drainage exterior insulation and finish system (EIFS) applied over water-resistive coating over sheathing.
- B. Related Sections:
 - 1. Section 06 1600, SHEATHING, for sheathing.
 - 2. Section 07 9200, JOINT SEALANTS, for sealing joints in EIFS with elastomeric joint sealants.

1.3 SYSTEM DESCRIPTION

- A. Class PB EIFS: A non-load-bearing, exterior wall cladding system that consists of an insulation board attached adhesively, mechanically, or both to the substrate; an integrally reinforced base coat; and a textured protective finish coat.
- B. Water-Drainage EIFS: EIFS with a means that allows water entering into an EIFS assembly to drain to the exterior.

1.4 PERFORMANCE REQUIREMENTS

- A. EIFS Performance: Comply with the following:
 - 1. Bond Integrity: Free from bond failure within EIFS components or between system and supporting wall construction, resulting from exposure to fire, wind loads, weather, or other inservice conditions.
 - 2. Weathertightness: Resistant to water penetration from exterior into water-drainage EIFS and assemblies behind it or through them into interior of building that results in deterioration of thermal-insulating effectiveness or other degradation of EIFS and assemblies behind it, including substrates, supporting wall construction, and interior finish, and including a means that allows water entering into an EIFS assembly to drain to the exterior.
- B. Class PB EIFS: Provide EIFS having physical properties and structural performance that comply with the following:
 - 1. Abrasion Resistance: Sample consisting of 1-inch- (25.4-mm-) thick EIFS mounted on 1/2-inch- (12.7-mm-) thick gypsum board; cured for a minimum of 28 days; and showing no cracking, checking, or loss of film integrity after exposure to 528 quarts (500 L) of sand when tested per ASTM D 968, Method A.
 - 2. Absorption-Freeze Resistance: No visible deleterious effects and negligible weight loss after 60 cycles per EIMA 101.01.
 - 3. Accelerated Weathering: Five samples per ICC-ES AC235 showing no cracking, checking, crazing, erosion, rusting, blistering, peeling, delamination, or other characteristics that might affect performance as a wall cladding after testing for 2000 hours when viewed under 5 times magnification per ASTM G 153 or ASTM G 154.
 - 4. Freeze-Thaw: No surface changes, cracking, checking, crazing, erosion, rusting, blistering, peeling, or delamination, or indications of delamination between components when viewed under 5 times magnification after 60 cycles per EIMA 101.01 or 10 cycles per ICC-ES AC235.

- 5. Mildew Resistance of Finish Coat: Sample applied to 2-by-2-inch (50.8-by-50.8-mm) clean glass substrate, cured for 28 days, and showing no growth when tested per ASTM D 3273 and evaluated according to ASTM D 3274.
- 6. Salt-Spray Resistance: No deleterious affects when tested according to ICC-ES AC235.
- 7. Tensile Adhesion: No failure in the EIFS, adhesive, base coat, or finish coat when tested per EIMA 101.03 or ICC-ES AC235.
- 8. Water Penetration: Sample consisting of 1-inch- (25.4-mm-) thick EIFS mounted on 1/2-inch- (12.7-mm-) thick gypsum board, cured for 28 days, and showing no water penetration into the plane of the base coat to expanded polystyrene board interface of the test specimen after 15 minutes at 6.24 lbf/sq. ft. (299 Pa) of air pressure difference or 20 percent of positive design wind pressure, whichever is greater, across the specimen during a test period when tested per EIMA 101.02.
- 9. Water Resistance: Three samples, each consisting of 1-inch- (25.4-mm-) thick EIFS mounted on 1/2-inch- (12.7-mm-) thick gypsum board; cured for 28 days; and showing no cracking, checking, crazing, erosion, rusting, blistering, peeling, or delamination after testing for 14 days per ASTM D 2247.
- 10. Impact Resistance: Sample consisting of 1-inch- (25.4-mm-) thick EIFS when constructed, conditioned, and tested per EIMA 101.86; and meeting or exceeding the following:
 - a. Standard Impact Resistance: 25 to 49 inch-lb (2.8 to 5.6 J).
 - b. Medium Impact Resistance: 50 to 89 inch-lb (5.7 to 10.1 J).
 - c. High Impact Resistance: 90 to 150 inch-lb (10.2 to 17 J).
 - d. Ultra-High Impact Resistance: More than 150 inch-lb (17 J).
- 11. Drainage: According to ICC-ES AC235.
- 12. Structural Performance Testing: EIFS assembly and components shall comply with ICC-ES AC235 when tested per ASTM E 330.

1.5 SUBMITTALS

- A. Product Data: For each type and component of EIFS indicated.
- B. Shop Drawings: For EIFS. Include plans, elevations, sections, details of components, details of penetration and termination, flashing details, joint locations and configurations, fastening and anchorage details including mechanical fasteners, and connections and attachments to other work.
- C. Samples for Verification: 24-inch- (600-mm-) square panels for each type of finish-coat color and texture indicated, prepared using same tools and techniques intended for actual work including a typical control joint filled with sealant of color selected.
 - 1. Include sealants Samples to verify colors selected.
- D. Qualification Data: For Installer and testing agency.
- E. Compatibility and Adhesion Test Reports: For joint sealants from sealant manufacturer indicating the following:
 - 1. Materials forming joint substrates and joint-sealant backings have been tested for compatibility and adhesion with joint sealants.
 - 2. Interpretation of test results and written recommendations for primers and substrate preparation needed for adhesion.
- F. Field quality-control reports
- G. Maintenance Data: For EIFS to include in maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: An installer who is certified in writing by EIFS manufacturer as qualified to install manufacturer's system using trained workers.
- B. Source Limitations: Obtain EIFS from single source from single EIFS manufacturer and from sources approved by EIFS manufacturer as compatible with system components.
- C. Fire-Test-Response Characteristics: Provide EIFS and system components with the following fire-test-response characteristics as determined by testing identical EIFS and system components per test method indicated below by UL or another testing and inspecting agency acceptable to authorities having jurisdiction. Identify products with appropriate markings of applicable testing agency.
 - 1. Fire-Resistance Characteristics: Provide materials and construction tested for fire resistance per ASTM E 119.
 - 2. Full-Scale Multistory Fire Test: Tested mockup, representative of completed multistory wall assembly of which EIFS is a part, complies with UBC Standard 26-4 for test method and required fire-test-response characteristics of exterior non-load-bearing wall panel assemblies containing foam-plastic insulation.
 - 3. Full-Scale Diversified Fire Test: Tested mockup, representative of completed multistory wall assembly of which EIFS is a part, showing no significant contribution to vertical or horizontal flame spread per ASTM E 108 modified for testing vertical walls.
 - 4. Intermediate-Scale Multistory Fire Test: Tested mockup, representative of completed multistory wall assembly of which EIFS is a part, complies with NFPA 285for test method and required fire-test-response characteristics of exterior non-load-bearing wall panel assemblies containing foamplastic insulation.
 - 5. Radiant Heat Exposure: No ignition of EIFS when tested according to NFPA 268.
 - 6. Potential Heat: Acceptable level when tested according to NFPA 259.
 - 7. Surface-Burning Characteristics: Provide insulation board, adhesives, base coats, and finish coats with flame-spread index of 25 or less and smoke-developed index of 450 or less, per ASTM E 84.
- D. Mockups: Build mockups to verify selections made under sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution and set quality standards for fabrication and installation.
 - 1. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.
- E. Preinstallation Conference: Conduct conference at Project site.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Deliver materials in original, unopened packages with manufacturers' labels intact and clearly identifying products.
- B. Store materials inside and under cover; keep them dry and protected from weather, direct sunlight, surface contamination, aging, corrosion, damaging temperatures, construction traffic, and other causes.
 - 1. Stack insulation board flat and off the ground.
 - 2. Protect plastic insulation against ignition at all times. Do not deliver plastic insulating materials to Project site before installation time.
 - 3. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

1.8 PROJECT CONDITIONS

A. Weather Limitations: Maintain ambient temperatures above 40 deg F (4.4 deg C) for a minimum of 24 hours before, during, and after adhesives or coatings are applied. Do not apply EIFS adhesives or

coatings during rainfall. Proceed with installation only when existing and forecasted weather conditions and ambient outdoor air, humidity, and substrate temperatures permit EIFS to be applied, dried, and cured according to manufacturers' written instructions and warranty requirements.

1.9 COORDINATION

A. Coordinate installation of EIFS with related Work specified in other Sections to ensure that wall assemblies, including sheathing, weather-resistant sheathing paper, flashing, trim, joint sealants, windows, and doors, are protected against damage from the effects of weather, age, corrosion, moisture, and other causes. Do not allow water to penetrate behind flashing and drainage plane that is behind water-drainage EIFS.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Basis of Design Product:
 - a. Senergy; Degussa Wall Systems, Inc.: Senerflex Channeled Adhesive Design
 - 2. Available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Dryvit Systems, Inc
 - b. Parex, Inc.; a brand of Parex Lahabra, Inc.
 - c. Sto Corp.

2.2 MATERIALS

- A. Compatibility: Provide water-resistive coating, adhesive, fasteners, board insulation, reinforcing meshes, base- and finish-coat systems, sealants, and accessories that are compatible with one another and with substrates and approved for use by EIFS manufacturer for Project.
- B. Water-Resistive Coatings: EIFS manufacturer's standard formulation and accessories for use as water/weather-resistive barriers, compatible with substrate, and complying with physical and performance criteria of ICC-ES AC209 or ICC-ES AC212.
 - 1. Sheathing Joint Compound and Tape: Type recommended by EIFS manufacturer for sealing joints between and penetrations through sheathing.
 - 2. VOC Content of Coatings Used as Insulation Adhesive: 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Flexible-Membrane Flashing: Cold-applied, fully self-adhering, self-healing, rubberized-asphalt and polyethylene-film composite sheet or tape and primer; EIFS manufacturer's standard or product recommended in writing by EIFS manufacturer.
- D. Insulation Adhesive: EIFS manufacturer's standard formulation designed for indicated use; compatible with substrate; and complying with one of the following:
 - 1. Job-mixed formulation of portland cement complying with ASTM C 150, Type I, and polymer-based adhesive specified for base coat.
 - 2. Factory-blended dry formulation of portland cement, dry polymer admixture, and fillers specified for base coat.
 - 3. Factory-mixed noncementitious formulation designed for adhesive attachment of insulation to substrates of type indicated, as recommended by EIFS manufacturer.

- E. Molded, Rigid Cellular Polystyrene Board Insulation: Comply with ASTM C 578, Type I; EIFS manufacturer's requirements; and EIMA's "EIMA Guideline Specification for Expanded Polystyrene (EPS) Insulation Board" for most stringent requirements for material performance and qualities of insulation, including dimensions and permissible variations, and the following:
 - 1. Aging: Before cutting and shipping, age insulation in block form by air drying for not less than six weeks or by another method approved by EIMA that produces equivalent results.
 - 2. Flame-Spread and Smoke-Developed Indexes: 25 and 450 or less, respectively, per ASTM E 84.
 - 3. Dimensions: Provide insulation boards not more than 24 by 48 inches (610 by 1219 mm) and in thickness indicated but not more than 4 inches (102 mm) thick or less than thickness allowed by ASTM C 1397.
 - 4. Back side of Board Insulation: EIFS manufacturer's standard factory-fabricated board with flat face on the interior side, no vertical channels on the back side of board.
 - 5. Board Insulation Closure Blocks: EIFS manufacturer's standard density, size, and configuration.
 - 6. Foam Shapes: Provide with profiles and dimensions indicated on Drawings.
- F. Reinforcing Mesh: Balanced, alkali-resistant, open-weave, glass-fiber mesh treated for compatibility with other EIFS materials, made from continuous multiend strands with retained mesh tensile strength of not less than 120 lbf/in. (21 dN/cm) per ASTM E 2098 or EIMA 105.01; complying with ASTM D 578 and the following:
 - 1. Standard-Impact Reinforcing Mesh: Not less than 4.0 oz./sq. yd. (136 g/sq. m)
 - 2. High-Impact Reinforcing Mesh: Not less than 15 oz./sq. yd. (509 g/sq. m)
 - 3. Strip Reinforcing Mesh: Not less than 3.75 oz./sq. yd. (127 g/sq. m).
 - 4. Detail Reinforcing Mesh: Not less than 4.0 oz./sq. yd. (136 g/sq. m)-
 - 5. Corner Reinforcing Mesh: Not less than 7.2 oz./sq. yd. (244 g/sq. m)
- G. Base-Coat Materials: EIFS manufacturer's standard mixture complying with one of the following requirements:
 - Job-mixed formulation of portland cement complying with ASTM C 150, Type I, white or natural color; and manufacturer's standard polymer-emulsion adhesive designed for use with portland cement
 - 2. Job-combined formulation of manufacturer's standard polymer-emulsion adhesive and manufacturer's standard dry mix containing portland cement.
 - 3. Factory-blended dry formulation of portland cement, dry polymer admixture, and inert fillers to which only water is added at Project site.
 - 4. Factory-mixed noncementitious formulation of polymer-emulsion adhesive and inert fillers that is ready to use without adding other materials.
- H. Primer: EIFS manufacturer's standard factory-mixed, polymer primer for preparing base-coat surface for application of finish coat.
- I. Finish-Coat Materials: EIFS manufacturer's standard acrylic-based coating complying with the following:
 - 1. Factory-mixed formulation of polymer-emulsion binder, colorfast mineral pigments, sound stone particles, and fillers.
 - 2. Colors: As selected by Architect from manufacturer's full range.
- J. Water: Potable.
- K. Trim Accessories: Type as designated or required to suit conditions indicated and to comply with EIFS manufacturer's written instructions; manufactured from UV-stabilized PVC; and complying with ASTM D 1784, manufacturer's standard Cell Class for use intended, and ASTM C 1063.
 - 1. Weep Screed/Track: Prefabricated, one-piece type for attachment behind insulation with perforated face leg extended to form a drip and weep holes in track bottom, of depth required to suit thickness of coating and insulation, with face leg perforated for bonding to coating and back leg; designed to drain incidental moisture that gets into wall construction to the exterior at terminations of EIFS with drainage.

- 2. Window Sill Flashing: Prefabricated type for both flashing and sloping sill over framing beneath windows; with end and back dams; designed to direct water to exterior.
- 3. Parapet Cap Flashing: Type for both flashing and covering parapet top with design complying with ASTM C 1397.

2.3 ELASTOMERIC SEALANTS

A. Sealants shall be as specified in Section 07 9200, JOINT SEALANTS.

2.4 MIXING

A. General: Comply with EIFS manufacturer's requirements for combining and mixing materials. Do not introduce admixtures, water, or other materials except as recommended by EIFS manufacturer. Mix materials in clean containers. Use materials within time period specified by EIFS manufacturer or discard.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of EIFS.
- B. Examine roof edges, wall framing, flashings, openings, substrates, and junctures at other construction for suitable conditions where EIFS will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.
 - 1. Begin coating application only after surfaces are dry.
 - 2. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

- A. Protect contiguous work from moisture deterioration and soiling caused by application of EIFS. Provide temporary covering and other protection needed to prevent spattering of exterior finish coats on other work.
- B. Protect EIFS, substrates, and wall construction behind them from inclement weather during installation. Prevent penetration of moisture behind drainage plane of EIFS and deterioration of substrates.
- C. Prepare and clean substrates to comply with EIFS manufacturer's written instructions to obtain optimum bond between substrate and adhesive for insulation.

3.3 EIFS INSTALLATION, GENERAL

A. Comply with EIFS manufacturer's written instructions for installation of EIFS as applicable to each type of substrate indicated.

3.4 SUBSTRATE PROTECTION APPLICATION

- A. Water-Resistive Coatings: Apply over substrates (including non-EIFS areas) to protect substrates from degradation and to provide water-/weather-resistive barrier.
 - 1. Tape and seal joints, exposed edges, terminations, and inside and outside corners of sheathing unless otherwise indicated by EIFS manufacturer's written instructions.

- B. Waterproof Adhesive/Base Coat: Apply window sills and parapets to protect substrates from degradation.
- C. Flexible-Membrane Flashing: Install over weather-resistive barrier, applied and lapped to shed water; seal at openings, penetrations, terminations, and where indicated by EIFS manufacturer's written instructions to protect wall assembly from degradation. Prime substrates, if required, and install flashing to comply with EIFS manufacturer's written instructions and details.

3.5 TRIM INSTALLATION

- A. Trim: Apply trim accessories at perimeter of EIFS, at expansion joints, at window sills, and elsewhere as indicated, according to EIFS manufacturer's written instructions. Coordinate with installation of insulation.
 - 1. Weep Screed/Track: Use at bottom termination edges, at window and door heads, and at floor line expansion joints of water-drainage EIFS unless otherwise indicated.
 - 2. Window Sill Flashing: Use at windows unless otherwise indicated.
 - 3. Parapet Cap Flashing: Use where indicated on Drawings.

3.6 INSULATION INSTALLATION

- A. Board Insulation: Adhesively attach insulation to substrate in compliance with ASTM C 1397, EIFS manufacturer's written instructions, and the following:
 - 1. Apply air/weather barrier in accordance with manufacturer's instructions.
 - 2. Attach starter track level.
 - 3. Apply adhesive vertically to insulation by notched-trowel method in a manner that results in coating the entire surface of sheathing with adhesive once insulation is adhered to sheathing unless EIFS manufacturer's written instructions specify using primer/sealer with ribbon-and-dab method. Apply adhesive to a thickness of not less than 1/4 inch (6.4 mm) for factory mixed and not less than 3/8 inch (9.6 mm) for field mixed, measured from surface of insulation before placement.
 - 4. Install EPS insulation board horizontally, butting edges tightly.
 - 5. Press insulation into place. Vertical adhesive channels must be maintained for water drainage--do not slide insulation into place. Apply pressure over the entire surface of insulation to accomplish uniform contact, high initial grab, and overall level surface.
 - 6. Allow adhered insulation to remain undisturbed for period recommended by EIFS manufacturer, but not less than 24 hours, before installing mechanical fasteners, beginning rasping and sanding insulation, or applying base coat and reinforcing mesh.
 - 7. Begin first course of insulation from starter track and work upward. Work from perimeter casing beads toward interior of panels if possible.
 - 8. Stagger vertical joints of insulation boards in successive courses to produce running bond pattern. Locate joints so no piece of insulation is less than 12 inches (300 mm) wide or 6 inches (150 mm) high. Offset joints not less than 6 inches (150 mm) from corners of window and door openings and not less than 4 inches (100 mm) from aesthetic reveals.
 - a. Adhesive Attachment: Offset joints of insulation not less than 6 inches (150 mm) from horizontal and 4 inches (100 mm) from vertical joints in sheathing.
 - 9. Place insulation with adhesive strips and channels, slots, or waves aligned in the vertical position for drainage. Align drainage channels, slots, or waves with channels, slots, or waves in insulation boards above and below.
 - 10. Interlock ends at internal and external corners.
 - 11. Abut insulation tightly at joints within and between each course to produce flush, continuously even surfaces without gaps or raised edges between boards. If gaps greater than 1/16 inch (1.6 mm) occur, fill with insulation cut to fit gaps exactly; insert insulation without using adhesive or other material.
 - 12. Cut insulation to fit openings, corners, and projections precisely and to produce edges and shapes complying with details indicated.

- 13. Rasp or sand flush entire surface of insulation to remove irregularities projecting more than 1/16 inch (1.6 mm) from surface of insulation and to remove yellowed areas due to sun exposure; do not create depressions deeper than 1/16 inch (1.6 mm).
- 14. Cut aesthetic reveals in outside face of insulation with high-speed router and bit configured to produce grooves, rabbets, and other features that comply with profiles and locations indicated. Do not reduce insulation thickness at aesthetic reveals to less than 3/4 inch (19 mm).
- 15. Interrupt insulation for expansion joints where indicated.
- 16. Form joints for sealant application by leaving gaps between adjoining insulation edges and between insulation edges and dissimilar adjoining surfaces. Make gaps wide enough to produce joint widths indicated after encapsulating joint substrates with base coat and reinforcing mesh.
- 17. Form joints for sealant application with back-to-back casing beads for joints within EIFS and with perimeter casing beads at dissimilar adjoining surfaces. Make gaps between casing beads and between perimeter casing beads and adjoining surfaces of width indicated.
- 18. After installing insulation and before applying field-applied reinforcing mesh, fully wrap board edges. Cover edges of board and extend encapsulating mesh not less than 2-1/2 inches (64 mm) over front and back face unless otherwise indicated on Drawings.
- 19. Treat exposed edges of insulation as follows:
 - a. Except for edges forming substrates of sealant joints, encapsulate with base coat, reinforcing mesh, and finish coat.
 - b. Encapsulate edges forming substrates of sealant joints within EIFS or between EIFS and other work with base coat and reinforcing mesh.
 - c. At edges trimmed by accessories, extend base coat, reinforcing mesh, and finish coat over face leg of accessories.
- 20. Coordinate installation of flashing and insulation to produce wall assembly that does not allow water to penetrate behind flashing and water-/weather-resistive barrier.
- B. Expansion Joints: Install at locations indicated, where required by EIFS manufacturer, and as follows:
 - 1. At expansion joints in substrates behind EIFS.
 - 2. Where EIFS adjoin dissimilar substrates, materials, and construction, including other EIFS.
 - 3. Where wall height or building shape changes.
 - 4. Where EIFS manufacturer requires joints in long continuous elevations.

3.7 BASE-COAT INSTALLATION

- A. Base Coat: Apply to exposed surfaces of insulation in minimum thickness recommended in writing by EIFS manufacturer, but not less than 1/16-inch (1.6-mm) dry-coat thickness.
- B. Reinforcing Mesh: Embed type indicated below in wet base coat to produce wrinkle-free installation with mesh continuous at corners and overlapped not less than 2-1/2 inches (64 mm) or otherwise treated at joints to comply with ASTM C 1397 and EIFS manufacturer's written instructions. Do not lap reinforcing mesh within 8 inches (204 mm) of corners. Completely embed mesh, applying additional base-coat material if necessary, so reinforcing-mesh color and pattern are not visible.
 - 1. Standard-impact reinforcing mesh unless otherwise indicated.
 - 2. High-impact reinforcing mesh where indicated.
- C. Double-Layer Reinforcing Mesh Application: Where indicated, apply second base coat and second layer of standard impact reinforcing mesh, overlapped not less than 2-1/2 inches (64 mm) or otherwise treated at joints to comply with ASTM C 1397 and EIFS manufacturer's written instructions in same manner as first application. Do not apply until first base coat has cured.
- D. Additional Reinforcing Mesh: Apply strip reinforcing mesh around openings extending 4 inches (100 mm) beyond perimeter. Apply additional 9-by-12-inch (230-by-300-mm) strip reinforcing mesh diagonally at corners of openings (re-entrant corners). Apply 8-inch- (200-mm-) wide strip reinforcing mesh at both inside and outside corners unless base layer of mesh is lapped not less than 4 inches (100 mm) on each side of corners.
 - 1. At aesthetic reveals, apply strip reinforcing mesh not less than 8 inches (200 mm) wide.
 - 2. Embed strip reinforcing mesh in base coat before applying first layer of reinforcing mesh.

- E. Foam Shapes: Fully embed reinforcing mesh in base coat.
- F. Double Base-Coat Application: Where indicated, apply second base coat in same manner and thickness as first application except without reinforcing mesh. Do not apply until first base coat has cured.

3.8 FINISH-COAT INSTALLATION

- A. Primer: Apply over dry base coat according to EIFS manufacturer's written instructions.
- B. Finish Coat: Apply over dry primed base coat, maintaining a wet edge at all times for uniform appearance, in thickness required by EIFS manufacturer to produce a uniform finish of color and texture matching approved sample and free of cold joints, shadow lines, and texture variations.
 - 1. Texture: Senergy "Classic" texture.
 - 2. Colors: To match architect's color samples, three (3) colors anticipated.
- C. Sealer Coat: Apply over dry finish coat, in number of coats and thickness required by EIFS manufacturer.

3.9 INSTALLATION OF JOINT SEALANTS

- A. Prepare joints and apply sealants, of type and at locations indicated, to comply with applicable requirements in Section 07 9200, JOINT SEALANTS, and in ASTM C 1481.
 - 1. Apply joint sealants after base coat has cured but before applying finish coat.
 - Clean surfaces to receive sealants to comply with indicated requirements and EIFS manufacturer's written instructions.
 - 3. Apply primer recommended in writing by sealant manufacturer for surfaces to be sealed.
 - 4. Install sealant backing to control depth and configuration of sealant joint and to prevent sealant from adhering to back of joint.
 - 5. Apply masking tape to protect areas adjacent to sealant joints. Remove tape immediately after tooling joints, without disturbing joint seal.
 - 6. Recess sealant sufficiently from surface of EIFS so an additional sealant application, including cylindrical sealant backing, can be installed without protruding beyond EIFS surface.

3.10 CLEANING AND PROTECTION

A. Remove temporary covering and protection of other work. Promptly remove coating materials from window and door frames and other surfaces outside areas indicated to receive EIFS coatings.

END OF SECTION 07 2419

SECTION 07 5419 - POLYVINYL-CHLORIDE (PVC) ROOFING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Adhered PVC membrane roofing system.
- 2. Mechanically fastened PVC membrane roofing system.
- 3. Vapor retarder.
- Roof insulation.

B. Related Sections:

- 1. Section 06 100, ROUGH CARPENTRY, for wood nailers, curbs, and blocking.
- 2. Section 07 2100, THERMAL INSULATION, for insulation beneath the roof deck.
- 3. Section 07 6200, SHEET METAL FLASHING AND TRIM, for metal roof penetration flashings, flashings, and counterflashings.
- 4. Section 07 9200, JOINT SEALANTS, for joint sealants, joint fillers, and joint preparation.

1.3 DEFINITIONS

A. Roofing Terminology: See ASTM D 1079 and glossary in NRCA's "The NRCA Roofing and Waterproofing Manual" for definition of terms related to roofing work in this Section.

1.4 PERFORMANCE REQUIREMENTS

- A. General Performance: Installed membrane roofing and base flashings shall withstand specified uplift pressures, thermally induced movement, and exposure to weather without failure due to defective manufacture, fabrication, installation, or other defects in construction. Membrane roofing and base flashings shall remain watertight.
- B. Material Compatibility: Provide roofing materials that are compatible with one another under conditions of service and application required, as demonstrated by membrane roofing manufacturer based on testing and field experience.
- C. Roofing System Design: Provide membrane roofing system that is identical to systems that have been successfully tested by a qualified testing and inspecting agency to resist uplift pressure calculated according to ASCE/SEI 7.
 - 1. Corner Uplift Pressure: As indicated.
 - 2. Perimeter Uplift Pressure: As indicated.
 - 3. Field-of-Roof Uplift Pressure: As indicated.

1.5 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For roofing system. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Base flashings and membrane terminations.

- 2. Tapered insulation, including slopes.
- 3. Roof plan showing orientation of steel roof deck and orientation of membrane roofing and fastening spacings and patterns for mechanically fastened membrane roofing.
- 4. Insulation fastening patterns for corner, perimeter, and field-of-roof locations.
- C. Samples for Verification: For the following products:
 - 1. Sheet roofing, of color specified, including T-shaped side and end lap seam.
 - 2. Roof insulation.
 - 3. Walkway pads or rolls.
- D. Maintenance Data: For roofing system to include in maintenance manuals.
- E. Warranties: Sample of special warranties.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: A qualified firm that is approved, authorized, or licensed by membrane roofing system manufacturer to install manufacturer's product and that is eligible to receive manufacturer's special warranty.
- B. Source Limitations: Obtain components including roof insulation and fasteners for membrane roofing system from same manufacturer as membrane roofing or approved by membrane roofing manufacturer.
- C. Exterior Fire-Test Exposure: ASTM E 108, Class B; for application and roof slopes indicated, as determined by testing identical membrane roofing materials by a qualified testing agency. Materials shall be identified with appropriate markings of applicable testing agency.
- D. Fire-Resistance Ratings: Where indicated, provide fire-resistance-rated roof assemblies identical to those of assemblies tested for fire resistance per ASTM E 119 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
- E. Preliminary Roofing Conference: Before starting roof deck construction, conduct conference at Project site.
 - 1. Meet with Owner, Architect, Owner's insurer if applicable, testing and inspecting agency representative, roofing Installer, roofing system manufacturer's representative, deck Installer, and installers whose work interfaces with or affects roofing, including installers of roof accessories and roof-mounted equipment.
 - 2. Review methods and procedures related to roofing installation, including manufacturer's written instructions.
 - 3. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 - 4. Review deck substrate requirements for conditions and finishes, including flatness and fastening.
 - 5. Review structural loading limitations of roof deck during and after roofing.
 - 6. Review base flashings, special roofing details, roof drainage, roof penetrations, equipment curbs, and condition of other construction that will affect roofing system.
 - 7. Review governing regulations and requirements for insurance and certificates if applicable.
 - 8. Review temporary protection requirements for roofing system during and after installation.
 - 9. Review roof observation and repair procedures after roofing installation.
- F. Preinstallation Roofing Conference: Conduct conference at Project site.
 - 1. Meet with Owner, Architect, Owner's insurer if applicable, testing and inspecting agency representative, roofing Installer, roofing system manufacturer's representative, deck Installer, and installers whose work interfaces with or affects roofing, including installers of roof accessories and roof-mounted equipment.

- 2. Review methods and procedures related to roofing installation, including manufacturer's written instructions.
- 3. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
- 4. Examine deck substrate conditions and finishes for compliance with requirements, including flatness and fastening.
- 5. Review structural loading limitations of roof deck during and after roofing.
- 6. Review base flashings, special roofing details, roof drainage, roof penetrations, equipment curbs, and condition of other construction that will affect roofing system.
- 7. Review governing regulations and requirements for insurance and certificates if applicable.
- 8. Review temporary protection requirements for roofing system during and after installation.
- 9. Review roof observation and repair procedures after roofing installation.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Deliver roofing materials to Project site in original containers with seals unbroken and labeled with manufacturer's name, product brand name and type, date of manufacture, approval or listing agency markings, and directions for storing and mixing with other components.
- B. Store liquid materials in their original undamaged containers in a clean, dry, protected location and within the temperature range required by roofing system manufacturer. Protect stored liquid material from direct sunlight.
 - 1. Discard and legally dispose of liquid material that cannot be applied within its stated shelf life.
- C. Protect roof insulation materials from physical damage and from deterioration by sunlight, moisture, soiling, and other sources. Store in a dry location. Comply with insulation manufacturer's written instructions for handling, storing, and protecting during installation.
- D. Handle and store roofing materials and place equipment in a manner to avoid permanent deflection of deck.

1.8 PROJECT CONDITIONS

A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit roofing system to be installed according to manufacturer's written instructions and warranty requirements.

1.9 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of membrane roofing system that fail in materials or workmanship within specified warranty period.
 - 1. Special warranty includes membrane roofing, base flashings, roof insulation, fasteners, cover boards, substrate board, roofing accessories, and other components of membrane roofing system.
 - 2. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PVC MEMBRANE ROOFING

- A. PVC Sheet: ASTM D 4434, Type II, Grade I, glass fiber reinforced, felt backed.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Sarnafil Inc.; Sarnafil G410.
 - 2. Thickness: 48 mils (1.2 mm), minimum.
 - 3. Exposed Face Color: Gray.

- B. PVC Sheet: ASTM D 4434, Type III, fabric reinforced and fabric backed.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Carlisle SynTec, Incorporated.
 - b. Flex Membranes International, Inc.
 - c. Johns Manville.
 - d. Sarnafil Inc.
 - 2. Thickness: 45 mils (1.1 mm), minimum.
 - 3. Exposed Face Color: Match existing.

2.2 AUXILIARY MEMBRANE ROOFING MATERIALS

- A. General: Auxiliary membrane roofing materials recommended by roofing system manufacturer for intended use, and compatible with membrane roofing.
 - 1. Liquid-type auxiliary materials shall comply with VOC limits of authorities having jurisdiction.
 - 2. Adhesives and sealants that are not on the exterior side of weather barrier shall comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
 - a. Plastic Foam Adhesives: 50 g/L.
 - b. Gypsum Board and Panel Adhesives: 50 g/L.
 - c. Multipurpose Construction Adhesives: 70 g/L.
 - d. Fiberglass Adhesives: 80 g/L.
 - e. Contact Adhesive: 80 g/L.
 - f. Other Adhesives: 250 g/L.
 - g. PVC Welding Compounds: 510 g/L.
 - h. Adhesive Primer for Plastic: 650 g/L
 - i. Single-Ply Roof Membrane Sealants: 450 g/L.
 - j. Nonmembrane Roof Sealants: 300 g/L.
 - k. Sealant Primers for Nonporous Substrates: 250 g/L.
 - 1. Sealant Primers for Porous Substrates: 775 g/L.
- B. Sheet Flashing: Manufacturer's standard sheet flashing of same material, type, reinforcement, thickness, and color as PVC sheet membrane.
- C. Bonding Adhesive: Manufacturer's standard.
- D. Metal Termination Bars: Manufacturer's standard, predrilled stainless-steel or aluminum bars, approximately 1 by 1/8 inch (25 by 3 mm) thick; with anchors.
- E. Metal Battens: Manufacturer's standard, aluminum-zinc-alloy-coated or zinc-coated steel sheet, approximately 1 inch wide by 0.05 inch (25 mm wide by 1.3 mm) thick, prepunched.
- F. Fasteners: Factory-coated steel fasteners and metal or plastic plates complying with corrosion-resistance provisions in FM Approvals 4470, designed for fastening membrane to substrate, and acceptable to membrane roofing system manufacturer.
- G. Miscellaneous Accessories: Provide pourable sealers, preformed cone and vent sheet flashings, preformed inside and outside corner sheet flashings, T-joint covers, lap sealants, termination reglets, and other accessories.

2.3 SUBSTRATE BOARDS

- A. Substrate Board: ASTM C 1177/C 1177M, glass-mat, water-resistant gypsum substrate, 1/2 inch (13 mm) thick.
 - 1. Products: Subject to compliance with requirements, provide the following:

- a. Georgia-Pacific Corporation; Dens Deck.
- B. Fasteners: Factory-coated steel fasteners and metal or plastic plates complying with corrosion-resistance provisions in FM Approvals 4470, designed for fastening substrate board to roof deck.

2.4 ROOF INSULATION

- A. General: Preformed roof insulation boards manufactured or approved by PVC membrane roofing manufacturer, selected from manufacturer's standard sizes suitable for application. Average R-value shall be 30 or greater.
- B. Extruded-Polystyrene Board Insulation: ASTM C 578, Type IV, 1.6-lb/cu. ft. (26-kg/cu. m) or Type X, 1.3-lb/cu. ft. (21-kg/cu. m) minimum density, square edged.
- C. Tapered Insulation: Provide factory-tapered insulation boards fabricated to slope of 1/4 inch per 12 inches (1:48) unless otherwise indicated.
- D. Provide preformed saddles, crickets, tapered edge strips, and other insulation shapes where indicated for sloping to drain. Fabricate to slopes indicated.

2.5 INSULATION ACCESSORIES

- A. General: Furnish roof insulation accessories recommended by insulation manufacturer for intended use and compatibility with membrane roofing.
- B. Fasteners: Factory-coated steel fasteners and metal or plastic plates complying with corrosion-resistance provisions in FM Approvals 4470, designed for fastening roof insulation and cover boards to substrate, and acceptable to roofing system manufacturer.
- C. Bead-Applied Insulation Adhesive: Insulation manufacturer's recommended bead-applied, low-rise, oneor multicomponent urethane adhesive formulated to attach roof insulation to substrate or to another insulation layer.
- D. Cover Board: ASTM C 1177/C 1177M, glass-mat, water-resistant gypsum substrate, 1/4 inch (6 mm) thick.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Georgia-Pacific Corporation; Dens Deck.
- E. Protection Mat: Woven or nonwoven polypropylene, polyolefin, or polyester fabric, water permeable and resistant to UV degradation, type and weight as recommended by roofing system manufacturer for application.

2.6 WALKWAYS

A. Flexible Walkways: Factory-formed, nonporous, heavy-duty, slip-resisting, surface-textured walkway pads or rolls, approximately 3/16 inch (5 mm) thick, and acceptable to membrane roofing system manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with the following requirements and other conditions affecting performance of roofing system:

- 1. Verify that roof openings and penetrations are in place and curbs are set and braced and that roof drain bodies are securely clamped in place.
- 2. Verify that wood blocking, curbs, and nailers are securely anchored to roof deck at penetrations and terminations and that nailers match thicknesses of insulation.
- 3. Verify that surface plane flatness and fastening of steel roof deck complies with requirements in Section 05 3100. STEEL DECKING.
- 4. Verify that minimum concrete drying period recommended by roofing system manufacturer has passed.
- 5. Verify that concrete substrate is visibly dry and free of moisture. Test for capillary moisture by plastic sheet method according to ASTM D 4263.
- Verify that concrete curing compounds that will impair adhesion of roofing components to roof deck have been removed.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Clean substrate of dust, debris, moisture, and other substances detrimental to roofing installation according to roofing system manufacturer's written instructions. Remove sharp projections.
- B. Prevent materials from entering and clogging roof drains and conductors and from spilling or migrating onto surfaces of other construction. Remove roof-drain plugs when no work is taking place or when rain is forecast.
- C. Complete terminations and base flashings and provide temporary seals to prevent water from entering completed sections of roofing system at the end of the workday or when rain is forecast. Remove and discard temporary seals before beginning work on adjoining roofing.

3.3 SUBSTRATE BOARD

- A. Install substrate board with long joints in continuous straight lines, perpendicular to roof slopes with end joints staggered between rows. Tightly butt substrate boards together.
 - 1. Fasten substrate board to top flanges of steel deck to resist uplift pressure at corners, perimeter, and field of roof according to membrane roofing system manufacturers' written instructions.

3.4 INSULATION INSTALLATION

- A. Coordinate installing membrane roofing system components so insulation is not exposed to precipitation or left exposed at the end of the workday.
- B. Comply with membrane roofing system and insulation manufacturer's written instructions for installing roof insulation.
- C. Install tapered insulation under area of roofing to conform to slopes indicated.
- D. Install insulation under area of roofing to achieve required thickness. Where overall insulation thickness is 2.7 inches (68 mm) or greater, install two or more layers with joints of each succeeding layer staggered from joints of previous layer a minimum of 6 inches (150 mm) in each direction.
 - 1. Where installing composite and noncomposite insulation in two or more layers, install noncomposite board insulation for bottom layer and intermediate layers, if applicable, and install composite board insulation for top layer.
- E. Trim surface of insulation where necessary at roof drains so completed surface is flush and does not restrict flow of water.

- F. Adhered Insulation: Install each layer of insulation and adhere to substrate as follows:
 - 1. Prime surface of concrete deck with asphalt primer at rate of 3/4 gal./100 sq. ft. (0.3 L/sq. m) and allow primer to dry.
 - 2. Set each layer of insulation in a solid mopping of hot roofing asphalt, applied within plus or minus 25 deg F (14 deg C) of equiviscous temperature.
 - 3. Set each layer of insulation in ribbons of bead-applied insulation adhesive, firmly pressing and maintaining insulation in place.
 - 4. Set each layer of insulation in a uniform coverage of full-spread insulation adhesive, firmly pressing and maintaining insulation in place.

3.5 ADHERED MEMBRANE ROOFING INSTALLATION

- A. Adhere membrane roofing over area to receive roofing and install according to membrane roofing system manufacturer's written instructions.
 - 1. Install sheet according to ASTM D 5036.
- B. Start installation of membrane roofing in presence of membrane roofing system manufacturer's technical personnel.
- C. Accurately align membrane roofing and maintain uniform side and end laps of minimum dimensions required by manufacturer. Stagger end laps.
- D. Bonding Adhesive: Apply to substrate and underside of membrane roofing at rate required by manufacturer and allow to partially dry before installing membrane roofing. Do not apply to splice area of membrane roofing.
- E. In addition to adhering, mechanically fasten membrane roofing securely at terminations, penetrations, and perimeter of roofing.
- F. Apply membrane roofing with side laps shingled with slope of roof deck where possible.
- G. Seams: Clean seam areas, overlap membrane roofing, and hot-air weld side and end laps of membrane roofing and sheet flashings according to manufacturer's written instructions to ensure a watertight seam installation.
 - Test lap edges with probe to verify seam weld continuity. Apply lap sealant to seal cut edges of sheet membrane.
 - 2. Verify field strength of seams a minimum of twice daily and repair seam sample areas.
 - 3. Repair tears, voids, and lapped seams in roofing that does not comply with requirements.
- H. Spread sealant bed over deck drain flange at roof drains and securely seal membrane roofing in place with clamping ring.
- I. Install membrane roofing and auxiliary materials to tie in to existing roofing to maintain weathertightness of transition and to not void warranty for existing membrane roofing system.

3.6 BASE FLASHING INSTALLATION

- A. Install sheet flashings and preformed flashing accessories and adhere to substrates according to membrane roofing system manufacturer's written instructions.
- B. Apply bonding adhesive to substrate and underside of sheet flashing at required rate and allow to partially dry. Do not apply to seam area of flashing.
- C. Flash penetrations and field-formed inside and outside corners with cured or uncured sheet flashing.

- D. Clean seam areas, overlap, and firmly roll sheet flashings into the adhesive. Hot-air weld side and end laps to ensure a watertight seam installation.
- E. Terminate and seal top of sheet flashings and mechanically anchor to substrate through termination bars.

3.7 WALKWAY INSTALLATION

A. Flexible Walkways: Install walkway products in locations indicated. Heat weld to substrate or adhere walkway products to substrate with compatible adhesive according to roofing system manufacturer's written instructions.

3.8 FIELD QUALITY CONTROL

- A. Final Roof Inspection: Arrange for roofing system manufacturer's technical personnel to inspect roofing installation on completion.
- B. Repair or remove and replace components of membrane roofing system where inspections indicate that they do not comply with specified requirements.
- C. Additional inspections, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

3.9 PROTECTING AND CLEANING

- A. Protect membrane roofing system from damage and wear during remainder of construction period. When remaining construction will not affect or endanger roofing, inspect roofing for deterioration and damage, describing its nature and extent in a written report, with copies to Architect and Owner.
- B. Correct deficiencies in or remove membrane roofing system that does not comply with requirements; repair substrates; and repair or reinstall membrane roofing system to a condition free of damage and deterioration at time of Substantial Completion and according to warranty requirements.
- C. Clean overspray and spillage from adjacent construction using cleaning agents and procedures recommended by manufacturer of affected construction.

3.10 ROOFING INSTALLER'S WARRANTY

- A. WHEREAS < Insert name > of < Insert address >, herein called the "Roofing Installer," has performed roofing and associated work ("work") on the following project:
 - 1. Owner: < Insert name of Owner>.
 - 2. Address: <**Insert address**>.
 - 3. Building Name/Type: < Insert information>.
 - 4. Address: <**Insert address**>.
 - 5. Area of Work: **Insert information**.
 - 6. Acceptance Date: < Insert date>.
 - 7. Warranty Period: **Insert time**.
 - 8. Expiration Date: <**Insert date**>.
- B. AND WHEREAS Roofing Installer has contracted (either directly with Owner or indirectly as a subcontractor) to warrant said work against leaks and faulty or defective materials and workmanship for designated Warranty Period,
- C. NOW THEREFORE Roofing Installer hereby warrants, subject to terms and conditions herein set forth, that during Warranty Period he will, at his own cost and expense, make or cause to be made such repairs

to or replacements of said work as are necessary to correct faulty and defective work and as are necessary to maintain said work in a watertight condition.

- D. This Warranty is made subject to the following terms and conditions:
 - 1. Specifically excluded from this Warranty are damages to work and other parts of the building, and to building contents, caused by:
 - a. Lightning;
 - b. Peak gust wind speed exceeding < **Insert wind speed**> mph (m/sec);
 - c. Fire:
 - d. Failure of roofing system substrate, including cracking, settlement, excessive deflection, deterioration, and decomposition;
 - e. Faulty construction of parapet walls, copings, chimneys, skylights, vents, equipment supports, and other edge conditions and penetrations of the work;
 - f. Vapor condensation on bottom of roofing; and
 - g. Activity on roofing by others, including construction contractors, maintenance personnel, other persons, and animals, whether authorized or unauthorized by Owner.
 - 2. When work has been damaged by any of foregoing causes, Warranty shall be null and void until such damage has been repaired by Roofing Installer and until cost and expense thereof have been paid by Owner or by another responsible party so designated.
 - 3. Roofing Installer is responsible for damage to work covered by this Warranty but is not liable for consequential damages to building or building contents resulting from leaks or faults or defects of work.
 - 4. During Warranty Period, if Owner allows alteration of work by anyone other than Roofing Installer, including cutting, patching, and maintenance in connection with penetrations, attachment of other work, and positioning of anything on roof, this Warranty shall become null and void on date of said alterations, but only to the extent said alterations affect work covered by this Warranty. If Owner engages Roofing Installer to perform said alterations, Warranty shall not become null and void unless Roofing Installer, before starting said work, shall have notified Owner in writing, showing reasonable cause for claim, that said alterations would likely damage or deteriorate work, thereby reasonably justifying a limitation or termination of this Warranty.
 - 5. During Warranty Period, if original use of roof is changed and it becomes used for, but was not originally specified for, a promenade, work deck, spray-cooled surface, flooded basin, or other use or service more severe than originally specified, this Warranty shall become null and void on date of said change, but only to the extent said change affects work covered by this Warranty.
 - 6. Owner shall promptly notify Roofing Installer of observed, known, or suspected leaks, defects, or deterioration and shall afford reasonable opportunity for Roofing Installer to inspect work and to examine evidence of such leaks, defects, or deterioration.
 - 7. This Warranty is recognized to be the only warranty of Roofing Installer on said work and shall not operate to restrict or cut off Owner from other remedies and resources lawfully available to Owner in cases of roofing failure. Specifically, this Warranty shall not operate to relieve Roofing Installer of responsibility for performance of original work according to requirements of the Contract Documents, regardless of whether Contract was a contract directly with Owner or a subcontract with Owner's General Contractor.
- E. IN WITNESS THEREOF, this instrument has been duly executed this <**Insert day**> day of <**Insert month**>, <**Insert year**>.
 - 1. Authorized Signature: < Insert signature>.
 - 2. Name: <**Insert name**>.
 - 3. Title: **Insert title**.

END OF SECTION 07 5419

SECTION 07 6200 - SHEET METAL FLASHING AND TRIM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Formed Products:
 - a. Formed roof drainage sheet metal fabrications.
 - b. Formed low-slope roof sheet metal fabrications.
 - c. Formed equipment support flashing.

B. Related Sections:

- 1. Section 06 1000, ROUGH CARPENTRY, for wood nailers, curbs, and blocking.
- 2. Section 07 5423, THERMOPLASTIC POLYOLEFIN (TPO) ROOFING, for installing sheet metal flashing and trim integral with membrane roofing.
- 3. Section 07 4213, METAL WALL PANELS, for sheet metal flashing and trim integral with metal wall panels.

1.3 PERFORMANCE REQUIREMENTS

- A. General: Sheet metal flashing and trim assemblies as indicated shall withstand wind loads, structural movement, thermally induced movement, and exposure to weather without failure due to defective manufacture, fabrication, installation, or other defects in construction. Completed sheet metal flashing and trim shall not rattle, leak, or loosen, and shall remain watertight.
- B. Fabricate and install roof edge flashing and copings to comply with 1504.5 of the 2009 International Building Code.
- C. Thermal Movements: Provide sheet metal flashing and trim that allows for thermal movements from ambient and surface temperature changes.
 - 1. Temperature Change (Range): 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each manufactured product and accessory.
- B. Shop Drawings: Show fabrication and installation layouts of sheet metal flashing and trim, including plans, elevations, expansion-joint locations, and keyed details. Distinguish between shop- and field-assembled work. Include the following:
 - 1. Identification of material, thickness, weight, and finish for each item and location in Project.
 - 2. Details for forming sheet metal flashing and trim, including profiles, shapes, seams, and dimensions.
 - 3. Details for joining, supporting, and securing sheet metal flashing and trim, including layout of fasteners, cleats, clips, and other attachments. Include pattern of seams.
 - 4. Details of termination points and assemblies, including fixed points.

- 5. Details of expansion joints and expansion-joint covers, including showing direction of expansion and contraction.
- 6. Details of edge conditions, including eaves, ridges, valleys, rakes, crickets, and counterflashings as applicable.
- 7. Details of special conditions.
- 8. Details of connections to adjoining work.
- 9. Detail formed flashing and trim at a scale of not less than 1-1/2 inches per 12 inches (1:10).
- C. Samples for Verification: For each type of exposed finish required, prepared on Samples of size indicated below:
 - 1. Anodized Aluminum Samples: Samples to show full range to be expected for each color required.
- D. Maintenance Data: For sheet metal flashing, trim, and accessories to include in maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Fabricator Qualifications: Shop that employs skilled workers who custom fabricate sheet metal flashing and trim similar to that required for this Project and whose products have a record of successful in-service performance.
- B. Sheet Metal Flashing and Trim Standard: Comply with SMACNA's "Architectural Sheet Metal Manual" unless more stringent requirements are specified or shown on Drawings.
- C. Preinstallation Conference: Conduct conference at Project site.
 - 1. Meet with Owner, Architect, Owner's insurer if applicable, Installer, and installers whose work interfaces with or affects sheet metal flashing and trim including installers of roofing materials, roof accessories, unit skylights, and roof-mounted equipment.
 - 2. Review methods and procedures related to sheet metal flashing and trim.
 - 3. Examine substrate conditions for compliance with requirements, including flatness and attachment to structural members.
 - 4. Review special roof details, roof drainage, roof penetrations, equipment curbs, and condition of other construction that will affect sheet metal flashing.
 - 5. Document proceedings, including corrective measures and actions required, and furnish copy of record to each participant.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Do not store sheet metal flashing and trim materials in contact with other materials that might cause staining, denting, or other surface damage. Store sheet metal flashing and trim materials away from uncured concrete and masonry.
- B. Protect strippable protective covering on sheet metal flashing and trim from exposure to sunlight and high humidity, except to the extent necessary for the period of sheet metal flashing and trim installation.

1.7 WARRANTY

- A. Special Warranty on Finishes: Manufacturer's standard form in which manufacturer agrees to repair finish or replace sheet metal flashing and trim that shows evidence of deterioration of factory-applied finishes within specified warranty period.
 - 1. Exposed Panel Finish: Deterioration includes, but is not limited to, the following:
 - a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 - b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 - c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 - 2. Finish Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SHEET METALS

- A. General: Protect mechanical and other finishes on exposed surfaces from damage by applying a strippable, temporary protective film before shipping.
- B. Aluminum Sheet: ASTM B 209 (ASTM B 209M), alloy as standard with manufacturer for finish required, with temper as required to suit forming operations and performance required.
 - 1. Surface: Smooth, flat.
 - 2. Exposed Coil-Coated Finishes:
 - Two-Coat Fluoropolymer: AAMA 605.2. Fluoropolymer finish containing not less than 70 percent PVDF resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 - 3. Color: As selected by Architect from manufacturer's full range.
 - 4. Concealed Finish: Pretreat with manufacturer's standard white or light-colored acrylic or polyester backer finish, consisting of prime coat and wash coat with a minimum total dry film thickness of 0.5 mil (0.013 mm).

2.2 MISCELLANEOUS MATERIALS

- A. General: Provide materials and types of fasteners, solder, welding rods, protective coatings, separators, sealants, and other miscellaneous items as required for complete sheet metal flashing and trim installation and recommended by manufacturer of primary sheet metal unless otherwise indicated.
- B. Fasteners: Wood screws, annular threaded nails, self-tapping screws, self-locking rivets and bolts, and other suitable fasteners designed to withstand design loads and recommended by manufacturer of primary sheet metal.
 - 1. General: Blind fasteners or self-drilling screws, gasketed, with hex-washer head.
 - a. Exposed Fasteners: Heads matching color of sheet metal using plastic caps or factory-applied coating.
 - b. Blind Fasteners: High-strength aluminum or stainless-steel rivets suitable for metal being fastened.
 - c. Spikes and Ferrules: Same material as gutter; with spike with ferrule matching internal gutter width.
 - 2. Fasteners for Aluminum Sheet: Aluminum or Series 300 stainless steel.
- C. Sealant Tape: Pressure-sensitive, 100 percent solids, gray polyisobutylene compound sealant tape with release-paper backing. Provide permanently elastic, nonsag, nontoxic, nonstaining tape 1/2 inch (13 mm) wide and 1/8 inch (3 mm) thick.
- D. Elastomeric Sealant: As specified in Section 079200, Joint Sealants.
- E. Bituminous Coating: Cold-applied asphalt emulsion complying with ASTM D 1187.
- F. Asphalt Roofing Cement: ASTM D 4586, asbestos free, of consistency required for application.

2.3 FABRICATION, GENERAL

- A. General: Custom fabricate sheet metal flashing and trim to comply with recommendations in SMACNA's "Architectural Sheet Metal Manual" that apply to design, dimensions, geometry, metal thickness, and other characteristics of item indicated. Fabricate items at the shop to greatest extent possible.
 - 1. Fabricate sheet metal flashing and trim in thickness or weight needed to comply with performance requirements, but not less than that specified for each application and metal.

- 2. Obtain field measurements for accurate fit before shop fabrication.
- 3. Form sheet metal flashing and trim without excessive oil canning, buckling, and tool marks and true to line and levels indicated, with exposed edges folded back to form hems.
- 4. Conceal fasteners and expansion provisions where possible. Exposed fasteners are not allowed on faces exposed to view.
- B. Fabrication Tolerances: Fabricate sheet metal flashing and trim that is capable of installation to a tolerance of 1/4 inch in 20 feet (6 mm in 6 m) on slope and location lines as indicated and within 1/8-inch (3-mm) offset of adjoining faces and of alignment of matching profiles.
- C. Sealed Joints: Form nonexpansion but movable joints in metal to accommodate elastomeric sealant.
- D. Expansion Provisions: Where lapped expansion provisions cannot be used, form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with butyl sealant concealed within joints.
- E. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal.
- F. Fabricate cleats and attachment devices of sizes as recommended by SMACNA's "Architectural Sheet Metal Manual" and as required to comply with the previously specified requirements, but not less than thickness of metal being secured.
- G. Seams for galvanized steel: Fabricate nonmoving seams with flat-lock seams. Tin edges to be seamed, form seams, and solder.
- H. Seams for prefinished aluminum: Fabricate nonmoving seams with flat-lock seams. Form seams and seal with elastomeric sealant unless otherwise recommended by sealant manufacturer for intended use. Rivet joints where necessary for strength.
- I. Do not use graphite pencils to mark metal surfaces.

2.4 LOW-SLOPE ROOF SHEET METAL FABRICATIONS

- A. Copings: Fabricate in minimum 96-inch- (2400-mm-) long, but not exceeding 10-foot- (3-m-) long, sections. Fabricate joint plates of same thickness as copings. Furnish with continuous cleats to support edge of external leg and drill elongated holes for fasteners on interior leg. Miter corners, seal, and solder or weld watertight.
 - 1. Coping Profile: SMACNA figure designation 3-4A, and as otherwise required to match the profile of the adjacent metal panel and curtainwall flashing.
 - 2. Joint Style: Butt, with 6-inch- (150-mm-) wide, exposed cover plates.
 - 3. Fabricate from the following materials:
 - a. Aluminum: 0.050 inch (1.27 mm) thick.
- B. Base Flashing: Fabricate from the following materials:
 - 1. Aluminum: 0.040 inch (1.02 mm) thick.
- C. Counterflashing: Fabricate from the following materials:
 - 1. Aluminum: 0.032 inch (0.81 mm) thick.
- D. Flashing Receivers: Fabricate from the following materials:
 - 1. Aluminum: 0.032 inch (0.81 mm) thick.
- E. Roof-Penetration Flashing: Fabricate from the following materials:
 - 1. Galvanized Steel: 0.028 inch (0.71 mm) thick.

2.5 MISCELLANEOUS SHEET METAL FABRICATIONS

- A. Equipment Support Flashing: Fabricate from the following materials:
 - 1. Galvanized Steel: 0.028 inch (0.71 mm) thick.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, to verify actual locations, dimensions and other conditions affecting performance of the Work.
 - 1. Verify compliance with requirements for installation tolerances of substrates.
 - 2. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and securely anchored.
- B. For the record, prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

- A. General: Anchor sheet metal flashing and trim and other components of the Work securely in place, with provisions for thermal and structural movement. Use fasteners, solder, welding rods, protective coatings, separators, sealants, and other miscellaneous items as required to complete sheet metal flashing and trim system.
 - 1. Install sheet metal flashing and trim true to line and levels indicated. Provide uniform, neat seams with minimum exposure of solder, welds, and sealant.
 - 2. Install sheet metal flashing and trim to fit substrates and to result in watertight performance. Verify shapes and dimensions of surfaces to be covered before fabricating sheet metal.
 - 3. Space cleats not more than 12 inches (300 mm) apart. Anchor each cleat with two fasteners. Bend tabs over fasteners.
 - 4. Install exposed sheet metal flashing and trim without excessive oil canning, buckling, and tool marks.
 - 5. Install sealant tape where indicated.
 - 6. Torch cutting of sheet metal flashing and trim is not permitted.
 - 7. Do not use graphite pencils to mark metal surfaces.
- B. Metal Protection: Where dissimilar metals will contact each other or corrosive substrates, protect against galvanic action by painting contact surfaces with bituminous coating or by other permanent separation as recommended by SMACNA.
- C. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at a maximum of 10 feet (3 m) with no joints allowed within 24 inches (600 mm) of corner or intersection. Where lapped expansion provisions cannot be used or would not be sufficiently watertight, form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with sealant concealed within joints.
- D. Fastener Sizes: Use fasteners of sizes that will penetrate wood substrate not less than 1-1/4 inches (32 mm) for nails and not less than 3/4 inch (19 mm) for wood screws, and at metal decking not less than recommended by fastener manufacturer to achieve maximum pull-out resistance.
- E. Seal joints as shown and as required for watertight construction.
 - 1. Where sealant-filled joints are used, embed hooked flanges of joint members not less than 1 inch (25 mm) into sealant. Form joints to completely conceal sealant. When ambient temperature at time of installation is moderate, between 40 and 70 deg F (4 and 21 deg C), set joint members for

- 50 percent movement each way. Adjust setting proportionately for installation at higher ambient temperatures. Do not install sealant-type joints at temperatures below 40 deg F (4 deg C).
- 2. Prepare joints and apply sealants to comply with requirements in Division 07 Section "Joint Sealants."
- F. Soldered Joints: Clean surfaces to be soldered, removing oils and foreign matter. Pre-tin edges of sheets to be soldered to a width of 1-1/2 inches (38 mm), except reduce pre-tinning where pre-tinned surface would show in completed Work.
 - 1. Do not solder metallic-coated steel and aluminum sheet.
 - 2. Do not use torches for soldering. Heat surfaces to receive solder and flow solder into joint. Fill joint completely. Completely remove flux and spatter from exposed surfaces.

3.3 ROOF FLASHING INSTALLATION

- A. General: Install sheet metal flashing and trim to comply with performance requirements and SMACNA's "Architectural Sheet Metal Manual." Provide concealed fasteners where possible, set units true to line, and level as indicated. Install work with laps, joints, and seams that will be permanently watertight and weather resistant.
- B. Copings: Anchor to resist uplift and outward forces according to recommendations in SMACNA's "Architectural Sheet Metal Manual" and as indicated.
 - 1. Interlock exterior bottom edge of coping with continuous cleat anchored to substrate at 16-inch (400-mm) centers, or as otherwise required to comply with performance requirements previously specified.
 - 2. Anchor interior leg of coping with washers and screw fasteners through slotted holes at 24-inch (600-mm) centers, or as otherwise required to comply with performance requirements previously specified.
- C. Pipe or Post Counterflashing: Install counterflashing umbrella with close-fitting collar with top edge flared for elastomeric sealant, extending a minimum of 4 inches (100 mm) over base flashing. Install stainless-steel draw band and tighten.
- D. Counterflashing: Coordinate installation of counterflashing with installation of base flashing. Insert counterflashing in reglets or receivers and fit tightly to base flashing. Extend counterflashing 4 inches (100 mm) over base flashing. Lap counterflashing joints a minimum of 4 inches (100 mm) and bed with sealant. Secure in a waterproof manner by means of snap-in installation and sealant or lead wedges and sealant.
- E. Roof-Penetration Flashing: Coordinate installation of roof-penetration flashing with installation of roofing and other items penetrating roof. Seal with elastomeric sealant and clamp flashing to pipes that penetrate roof.

3.4 MISCELLANEOUS FLASHING INSTALLATION

A. Equipment Support Flashing: Coordinate installation of equipment support flashing with installation of roofing and equipment. Weld or seal flashing with elastomeric sealant to equipment support member.

3.5 ERECTION TOLERANCES

A. Installation Tolerances: Shim and align sheet metal flashing and trim within installed tolerance of 1/4 inch in 20 feet (6 mm in 6 m) on slope and location lines as indicated and within 1/8-inch (3-mm) offset of adjoining faces and of alignment of matching profiles.

3.6 CLEANING AND PROTECTION

- A. Clean exposed metal surfaces of substances that interfere with uniform oxidation and weathering.
- B. Clean and neutralize flux materials. Clean off excess solder.
- C. Clean off excess sealants.
- D. Remove temporary protective coverings and strippable films as sheet metal flashing and trim are installed unless otherwise indicated in manufacturer's written installation instructions. On completion of installation, remove unused materials and clean finished surfaces. Maintain in a clean condition during construction.
- E. Replace sheet metal flashing and trim that have been damaged or that have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 07 6200

SECTION 07 7200 - ROOF ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - Roof hatches.
- B. Related Sections:
 - 1. Section 05500, METAL FABRICATIONS, for metal vertical ladders, ships' ladders, and stairs for access to roof hatches.
 - 2. Division 07 low-slope roofing Sections for roofing accessories.

1.3 PERFORMANCE REQUIREMENTS

A. General Performance: Roof accessories shall withstand exposure to weather and resist thermally induced movement without failure, rattling, leaking, or fastener disengagement due to defective manufacture, fabrication, installation, or other defects in construction.

1.4 SUBMITTALS

- A. Product Data: For each type of roof accessory indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
- B. Shop Drawings: For roof accessories. Include plans, elevations, keyed details, and attachments to other work. Indicate dimensions, loadings, and special conditions. Distinguish between plant- and field-assembled work.
- C. Operation and Maintenance Data: For roof accessories to include in operation and maintenance manuals.
- D. Warranty: Sample of special warranty.

1.5 COORDINATION

- A. Coordinate layout and installation of roof accessories with roofing membrane and base flashing and interfacing and adjoining construction to provide a leakproof, weathertight, secure, and noncorrosive installation.
- B. Coordinate dimensions with rough-in information or Shop Drawings of equipment to be supported.

PART 2 - PRODUCTS

2.1 METAL MATERIALS

- A. Zinc-Coated (Galvanized) Steel Sheet: ASTM A 653/A 653M, G90 (Z275) coating designation.
 - 1. Mill-Phosphatized Finish: Manufacturer's standard for field painting.

- 2. Factory Prime Coating: Where field painting is indicated, apply pretreatment and white or light-colored, factory-applied, baked-on epoxy primer coat, with a minimum dry film thickness of 0.2 mil (0.005 mm).
- 3. Exposed Coil-Coated Finish: Prepainted by the coil-coating process to comply with ASTM A 755/A 755M. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 - a. Two-Coat Fluoropolymer Finish: AAMA 621. System consisting of primer and fluoropolymer color topcoat containing not less than 70 percent PVDF resin by weight.
- 4. Baked-Enamel or Powder-Coat Finish: Immediately after cleaning and pretreating, apply manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat, with a minimum dry film thickness of 1 mil (0.025 mm) for topcoat. Comply with coating manufacturer's written instructions for applying and baking to achieve a minimum dry film thickness of 2 mils (0.05 mm).
- 5. Concealed Finish: Pretreat with manufacturer's standard white or light-colored acrylic or polyester-backer finish consisting of prime coat and wash coat, with a minimum total dry film thickness of 0.5 mil (0.013 mm).
- B. Aluminum-Zinc Alloy-Coated Steel Sheet: ASTM A 792/A 792M, AZ50 (AZM150) coated.
 - 1. Factory Prime Coating: Where field painting is indicated, apply pretreatment and white or light-colored, factory-applied, baked-on epoxy primer coat, with a minimum dry film thickness of 0.2 mil (0.005 mm).
 - 2. Exposed Coil-Coated Finish: Prepainted by the coil-coating process to comply with ASTM A 755/A 755M. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 - a. Two-Coat Fluoropolymer Finish: AAMA 621. System consisting of primer and fluoropolymer color topcoat containing not less than 70 percent PVDF resin by weight.
 - 3. Baked-Enamel or Powder-Coat Finish: Immediately after cleaning and pretreating, apply manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat, with a minimum dry film thickness of 1 mil (0.025 mm) for topcoat. Comply with coating manufacturer's written instructions for applying and baking to achieve a minimum dry film thickness of 2 mils (0.05 mm).
 - 4. Concealed Finish: Pretreat with manufacturer's standard white or light-colored acrylic or polyester-backer finish consisting of prime coat and wash coat, with a minimum total dry film thickness of 0.5 mil (0.013 mm).
- C. Aluminum Sheet: ASTM B 209 (ASTM B 209M), manufacturer's standard alloy for finish required, with temper to suit forming operations and performance required.
 - 1. Mill Finish: As manufactured.
 - 2. Factory Prime Coating: Where field painting is indicated, apply pretreatment and white or light-colored, factory-applied, baked-on epoxy primer coat, with a minimum dry film thickness of 0.2 mil (0.005 mm).
 - 3. Clear Anodic Finish: AAMA 611, AA-M12C22A31, Class II, 0.010 mm or thicker.
 - 4. Baked-Enamel or Powder-Coat Finish: AAMA 2603 except with a minimum dry film thickness of 1.5 mils (0.04 mm). Comply with coating manufacturer's written instructions for cleaning, conversion coating, and applying and baking finish.
 - 5. Concealed Finish: Pretreat with manufacturer's standard white or light-colored acrylic or polyester-backer finish consisting of prime coat and wash coat, with a minimum total dry film thickness of 0.5 mil (0.013 mm).
- D. Aluminum Extrusions and Tubes: ASTM B 221 (ASTM B 221M), manufacturer's standard alloy and temper for type of use, finished to match assembly where used, otherwise mill finished.
- E. Copper Sheet: ASTM B 370, manufacturer's standard temper.
- F. Stainless-Steel Sheet and Shapes: ASTM A 240/A 240M or ASTM A 666, Type 304.

- G. Steel Shapes: ASTM A 36/A 36M, hot-dip galvanized according to ASTM A 123/A 123M unless otherwise indicated.
- H. Steel Tube: ASTM A 500, round tube.
- I. Galvanized-Steel Tube: ASTM A 500, round tube, hot-dip galvanized according to ASTM A 123/A 123M.
- J. Steel Pipe: ASTM A 53/A 53M, galvanized.

2.2 MISCELLANEOUS MATERIALS

- A. General: Provide materials and types of fasteners, protective coatings, sealants, and other miscellaneous items required by manufacturer for a complete installation.
- B. Cellulosic-Fiber Board Insulation: ASTM C 208, Type II, Grade 1, thickness as indicated.
- C. Glass-Fiber Board Insulation: ASTM C 726, thickness as indicated.
- D. Polyisocyanurate Board Insulation: ASTM C 1289, thickness as indicated.
- E. Wood Nailers: Softwood lumber, pressure treated with waterborne preservatives for aboveground use, acceptable to authorities having jurisdiction, containing no arsenic or chromium, and complying with AWPA C2; not less than 1-1/2 inches (38 mm) thick.
- F. Bituminous Coating: Cold-applied asphalt emulsion complying with ASTM D 1187.
- G. Underlayment:
 - 1. Felt: ASTM D 226, Type II (No. 30), asphalt-saturated organic felt, nonperforated.
 - 2. Polyethylene Sheet: 6-mil- (0.15-mm-) thick polyethylene sheet complying with ASTM D 4397.
 - 3. Slip Sheet: Building paper, 3-lb/100 sq. ft. (0.16-kg/sq. m) minimum, rosin sized.
- H. Fasteners: Roof accessory manufacturer's recommended fasteners suitable for application and metals being fastened. Match finish of exposed fasteners with finish of material being fastened. Provide nonremovable fastener heads to exterior exposed fasteners. Furnish the following unless otherwise indicated:
 - 1. Fasteners for Zinc-Coated or Aluminum-Zinc Alloy-Coated Steel: Series 300 stainless steel or hot-dip zinc-coated steel according to ASTM A 153/A 153M or ASTM F 2329.
 - 2. Fasteners for Aluminum Sheet: Aluminum or Series 300 stainless steel.
 - 3. Fasteners for Copper Sheet: Copper, hardware bronze, or passivated Series 300 stainless steel.
 - 4. Fasteners for Stainless-Steel Sheet: Series 300 stainless steel.
- I. Gaskets: Manufacturer's standard tubular or fingered design of neoprene, EPDM, PVC, or silicone or a flat design of foam rubber, sponge neoprene, or cork.
- J. Elastomeric Sealant: ASTM C 920, elastomeric polyurethane or silicone polymer sealant as recommended by roof accessory manufacturer for installation indicated; low modulus; of type, grade, class, and use classifications required to seal joints and remain watertight.
- K. Butyl Sealant: ASTM C 1311, single-component, solvent-release butyl rubber sealant; polyisobutylene plasticized; heavy bodied for expansion joints with limited movement.
- L. Asphalt Roofing Cement: ASTM D 4586, asbestos free, of consistency required for application.

2.3 ROOF HATCH

- A. Roof Hatches: Metal roof-hatch units with lids and insulated double-walled curbs, welded or mechanically fastened and sealed corner joints, continuous lid-to-curb counterflashing and weathertight perimeter gasketing, integral metal cant, and integrally formed deck-mounting flange at perimeter bottom.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Babcock-Davis.
 - b. Bilco Company (The).
 - c. J. L. Industries, Inc.
 - d. Milcor Inc.; Commercial Products Group of Hart & Cooley, Inc.
 - e. Nystrom.
- B. Type and Size: Single-leaf lid, 30 by 54 inches (750 by 1370 mm).
- C. Loads: Minimum 40-lbf/sq. ft. (1.9-kPa) external live load and 20-lbf/sq. ft. (0.95-kPa) internal uplift load.
- D. Hatch Material: Zinc-coated (galvanized) or aluminum-zinc alloy-coated steel sheet, 0.079 inch (2.01 mm) thick.
 - 1. Finish: Baked enamel or powder coat.
 - 2. Color: As selected from manufacturer's standard colors.
- E. Construction:
 - 1. Insulation: Cellulosic-fiber or polyisocyanurate board.
 - 2. Hatch Lid: Opaque, insulated, and double walled, with manufacturer's standard metal liner of same material and finish as outer metal lid.
 - 3. Curb Liner: Manufacturer's standard, of same material and finish as metal curb.
 - 4. Fabricate curbs to minimum height of 12 inches (300 mm) unless otherwise indicated.
- F. Hardware: Galvanized-steel spring latch with turn handles, butt- or pintle-type hinge system, and padlock hasps inside and outside.
 - 1. Provide two-point latch on lids larger than 84 inches (2130 mm).
 - 2. Provide remote-control operation.
- G. Safety Railing System: Roof-hatch manufacturer's standard system including rails, clamps, fasteners, safety barrier at railing opening, and accessories required for a complete installation; attached to roof hatch and complying with 29 CFR 1910.23 requirements and authorities having jurisdiction.
 - 1. Height: 42 inches (1060 mm) above finished roof deck.
 - 2. Posts and Rails: Galvanized-steel pipe, 1-1/4 inches (31 mm) in diameter or galvanized-steel tube, 1-5/8 inches (41 mm) in diameter.
 - 3. Flat Bar: Galvanized steel, 2 inches (50 mm) high by 3/8 inch (9 mm) thick.
 - 4. Maximum Opening Size: System constructed to prevent passage of a sphere 21 inches (533 mm) in diameter.
 - 5. Chain Passway Barrier: Galvanized proof coil chain with quick link on fixed end.
 - 6. Self-Latching Gate: Fabricated of same materials and rail spacing as safety railing system. Provide manufacturer's standard hinges and self-latching mechanism.
 - 7. Post and Rail Tops and Ends: Weather resistant, closed or plugged with prefabricated end fittings.
 - 8. Provide weep holes or another means to drain entrapped water in hollow sections of handrail and railing members.
 - 9. Fabricate joints exposed to weather to be watertight.
 - 10. Fasteners: Manufacturer's standard, finished to match railing system.
 - 11. Finish: Manufacturer's standard.

- H. Ladder-Assist Post: Roof-hatch manufacturer's standard device for attachment to roof-access ladder.
 - 1. Operation: Post locks in place on full extension; release mechanism returns post to closed position.
 - 2. Height: 42 inches (1060 mm) above finished roof deck.
 - 3. Material: Steel tube.
 - 4. Post: 1-5/8-inch- (41-mm-) diameter pipe.
 - 5. Finish: Manufacturer's standard baked enamel or powder coat.

2.4 GENERAL FINISH REQUIREMENTS

- A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
- B. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, to verify actual locations, dimensions, and other conditions affecting performance of the Work.
- B. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and securely anchored.
- C. Verify dimensions of roof openings for roof accessories.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. General: Install roof accessories according to manufacturer's written instructions.
 - 1. Install roof accessories level, plumb, true to line and elevation, and without warping, jogs in alignment, excessive oil canning, buckling, or tool marks.
 - 2. Anchor roof accessories securely in place so they are capable of resisting indicated loads.
 - 3. Use fasteners, separators, sealants, and other miscellaneous items as required to complete installation of roof accessories and fit them to substrates.
 - 4. Install roof accessories to resist exposure to weather without failing, rattling, leaking, or loosening of fasteners and seals.
- B. Metal Protection: Protect metals against galvanic action by separating dissimilar metals from contact with each other or with corrosive substrates by painting contact surfaces with bituminous coating or by other permanent separation as recommended by manufacturer.
 - 1. Coat concealed side of uncoated aluminum roof accessories with bituminous coating where in contact with wood, ferrous metal, or cementitious construction.
 - 2. Underlayment: Where installing roof accessories directly on cementitious or wood substrates, install a course of felt underlayment and cover with a slip sheet, or install a course of polyethylene sheet.
 - 3. Bed flanges in thick coat of asphalt roofing cement where required by manufacturers of roof accessories for waterproof performance.

- C. Roof-Hatch Installation:
 - 1. Install roof hatch so top surface of hatch curb is level.
 - 2. Verify that roof hatch operates properly. Clean, lubricate, and adjust operating mechanism and hardware.
 - 3. Attach safety railing system to roof-hatch curb.
 - 4. Attach ladder-assist post according to manufacturer's written instructions.
- D. Seal joints with sealant as required by roof accessory manufacturer.

3.3 REPAIR AND CLEANING

- A. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and repair galvanizing according to ASTM A 780.
- B. Touch up factory-primed surfaces with compatible primer ready for field painting according to Division 09 painting Sections.
- C. Clean exposed surfaces according to manufacturer's written instructions.
- D. Clean off excess sealants.
- E. Replace roof accessories that have been damaged or that cannot be successfully repaired by finish touchup or similar minor repair procedures.

END OF SECTION 07 7200

SECTION 07 8413 - PENETRATION FIRESTOPPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Penetrations in fire-resistance-rated walls.
 - 2. Penetrations in horizontal assemblies.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Product Schedule: For each penetration firestopping system. Include location and design designation of qualified testing and inspecting agency.
 - 1. Where Project conditions require modification to a qualified testing and inspecting agency's illustration for a particular penetration firestopping condition, submit illustration, with modifications marked, approved by penetration firestopping manufacturer's fire-protection engineer as an engineering judgment or equivalent fire-resistance-rated assembly.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Installer Certificates: From Installer indicating penetration firestopping has been installed in compliance with requirements and manufacturer's written recommendations.
- C. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for penetration firestopping.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: A firm experienced in installing penetration firestopping similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful performance. Qualifications include having the necessary experience, staff, and training to install manufacturer's products per specified requirements. Manufacturer's willingness to sell its penetration firestopping products to Contractor or to Installer engaged by Contractor does not in itself confer qualification on buyer.
- B. Fire-Test-Response Characteristics: Penetration firestopping shall comply with the following requirements:
 - 1. Penetration firestopping tests are performed by a qualified testing agency acceptable to authorities having jurisdiction.
 - 2. Penetration firestopping is identical to those tested per testing standard referenced in "Penetration Firestopping" Article. Provide rated systems complying with the following requirements:
 - a. Penetration firestopping products bear classification marking of qualified testing and inspecting agency.
 - b. Classification markings on penetration firestopping correspond to designations listed by the following:
 - 1) UL in its "Fire Resistance Directory."

- C. Preinstallation Conference: Conduct conference at Project site.
- D. Source Limitations: Obtain penetration firestopping systems for the entire project, through one source, and from one manufacturer.

1.6 PROJECT CONDITIONS

- A. Environmental Limitations: Do not install penetration firestopping when ambient or substrate temperatures are outside limits permitted by penetration firestopping manufacturers or when substrates are wet because of rain, frost, condensation, or other causes.
- B. Install and cure penetration firestopping per manufacturer's written instructions using natural means of ventilations or, where this is inadequate, forced-air circulation.

1.7 COORDINATION

- A. Coordinate construction of openings and penetrating items to ensure that penetration firestopping is installed according to specified requirements.
- B. Coordinate sizing of sleeves, openings, core-drilled holes, or cut openings to accommodate penetration firestopping.
- C. Notify testing agency at least seven days in advance of penetration firestopping installations; confirm dates and times on day preceding each series of installations.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work shall comply with the following:
 - 1. Listed system requirements such as construction type, penetration type, annular space requirements and fire rating must comply with system requirements as tested by UL.
 - 2. Acceptable manufacturers and products are those listed in the UL Fire-Resistive Directory for the UL system involved.

2.2 PENETRATION FIRESTOPPING

- A. Provide penetration firestopping that is produced and installed to resist spread of fire according to requirements indicated, resist passage of smoke and other gases, and maintain original fire-resistance rating of construction penetrated. Penetration firestopping systems shall be compatible with one another, with the substrates forming openings, and with penetrating items if any.
- B. Penetrations in Fire-Resistance-Rated Assemblies: Provide penetration firestopping with ratings determined per UL 1479, based on testing at a positive pressure differential of 0.01-inch wg (2.49 Pa).
- C. Exposed Penetration Firestopping: Provide products with flame-spread and smoke-developed indexes of less than 25 and 450, respectively, as determined per ASTM E 84.
- D. Accessories: Provide components for each penetration firestopping system that are needed to install fill materials and to maintain ratings required. Use only those components specified by penetration firestopping manufacturer and approved by qualified testing and inspecting agency for firestopping indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Installer present, for compliance with requirements for opening configurations, penetrating items, substrates, and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Cleaning: Clean out openings immediately before installing penetration firestopping to comply with manufacturer's written instructions and with the following requirements:
 - 1. Remove from surfaces of opening substrates and from penetrating items foreign materials that could interfere with adhesion of penetration firestopping.
 - 2. Clean opening substrates and penetrating items to produce clean, sound surfaces capable of developing optimum bond with penetration firestopping. Remove loose particles remaining from cleaning operation.
 - 3. Remove laitance and form-release agents from concrete.
- B. Priming: Prime substrates where recommended in writing by manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.
- C. Masking Tape: Use masking tape to prevent penetration firestopping from contacting adjoining surfaces that will remain exposed on completion of the Work and that would otherwise be permanently stained or damaged by such contact or by cleaning methods used to remove stains. Remove tape as soon as possible without disturbing firestopping's seal with substrates.

3.3 INSTALLATION

- A. General: Install penetration firestopping to comply with manufacturer's written installation instructions and published drawings for products and applications indicated.
- B. Install forming materials and other accessories of types required to support fill materials during their application and in the position needed to produce cross-sectional shapes and depths required to achieve fire ratings indicated.
 - 1. After installing fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not indicated as permanent components of firestopping.
- C. Install fill materials for firestopping by proven techniques to produce the following results:
 - 1. Fill voids and cavities formed by openings, forming materials, accessories, and penetrating items as required to achieve fire-resistance ratings indicated.
 - 2. Apply materials so they contact and adhere to substrates formed by openings and penetrating items.
 - 3. For fill materials that will remain exposed after completing the Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.4 FIELD QUALITY CONTROL

- A. Coordinate with the testing agency to perform tests and inspections.
- B. Where deficiencies are found or penetration firestopping is damaged or removed because of testing, repair or replace penetration firestopping to comply with requirements.

C. Proceed with enclosing penetration firestopping with other construction only after inspection reports are issued and installations comply with requirements.

3.5 CLEANING AND PROTECTION

- A. Clean off excess fill materials adjacent to openings as the Work progresses by methods and with cleaning materials that are approved in writing by penetration firestopping manufacturers and that do not damage materials in which openings occur.
- B. Provide final protection and maintain conditions during and after installation that ensure that penetration firestopping is without damage or deterioration at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, immediately cut out and remove damaged or deteriorated penetration firestopping and install new materials to produce systems complying with specified requirements.

3.6 PENETRATION FIRESTOPPING SCHEDULE

- A. Where UL-classified systems are indicated, they refer to system numbers in UL's "Fire Resistance Directory" under product Category XHEZ.
- B. Firestopping with No Penetrating Items:
 - 1. UL-Classified Systems: C-AJ- W-J- W-L- 0001-0999.
- C. Firestopping for Metallic Pipes, Conduit, or Tubing:
 - 1. UL-Classified Systems: C-AJ-W-J-W-K-W-L-1001-1999.
- D. Firestopping for Nonmetallic Pipe, Conduit, or Tubing:
 - UL-Classified Systems: C-AJ- W-J- W-K- W-L- 2001-2999.
- E. Firestopping for Electrical Cables:
 - 1. UL-Classified Systems: C-AJ- W-J-W-K-W-L-3001-3999.
- F. Firestopping for Cable Trays with Electric Cables:
 - 1. UL-Classified Systems: C-AJ- W-J- W-K- W-L-4001-4999.
- G. Firestopping for Insulated Pipes:
 - 1. UL-Classified Systems: C-AJ- W-J- W-L-5001-5999.
- H. Firestopping for Miscellaneous Electrical Penetrants:
 - 1. UL-Classified Systems: C-AJ- W-L- W-J- 6001-6999.
- I. Firestopping for Miscellaneous Mechanical Penetrants:
 - 1. UL-Classified Systems: C-AJ- W-J- W-L- 7001-7999.
- J. Firestopping for Groupings of Penetrants:
 - 1. UL-Classified Systems: C-AJ- W-J- W-L- 8001-8999.

END OF SECTION 078413

SECTION 078446 - FIRE-RESISTIVE JOINT SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Joints in or between fire-resistance-rated constructions.
- 2. Joints at exterior curtain-wall/floor intersections.

B. Related Sections:

1. Section 078413 "Penetration Firestopping" for penetrations in fire-resistance-rated walls, horizontal assemblies, and smoke barriers.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Product Schedule: For each fire-resistive joint system. Include location and design designation of qualified testing agency.
 - 1. Where Project conditions require modification to a qualified testing agency's illustration for a particular fire-resistive joint system condition, submit illustration, with modifications marked, approved by fire-resistive joint system manufacturer's fire-protection engineer as an engineering judgment or equivalent fire-resistance-rated assembly.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Installer Certificates: From Installer indicating fire-resistive joint systems have been installed in compliance with requirements and manufacturer's written recommendations.
- C. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for fire-resistive joint systems.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: A firm experienced in installing fire-resistive joint systems similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful performance. Qualifications include having the necessary experience, staff, and training to install manufacturer's products per specified requirements. Manufacturer's willingness to sell its fire-resistive joint system products to Contractor or to Installer engaged by Contractor does not in itself confer qualification on buyer.
- B. Fire-Test-Response Characteristics: Fire-resistive joint systems shall comply with the following requirements:
 - 1. Fire-resistive joint system tests are performed by a qualified testing agency acceptable to authorities having jurisdiction.

- 2. Fire-resistive joint systems are identical to those tested per testing standard referenced in "Fire-Resistive Joint Systems" Article. Provide rated systems complying with the following requirements:
 - a. Fire-resistive joint system products bear classification marking of qualified testing agency.
 - b. Fire-resistive joint systems correspond to those indicated by reference to designations listed by the following:
 - 1) UL in its "Fire Resistance Directory."
- C. Preinstallation Conference: Conduct conference at Project site.
- D. Source Limitations: Obtain fire resistive joint systems for the entire project, through one source, and from one manufacturer.

1.6 PROJECT CONDITIONS

- A. Environmental Limitations: Do not install fire-resistive joint systems when ambient or substrate temperatures are outside limits permitted by fire-resistive joint system manufacturers or when substrates are wet due to rain, frost, condensation, or other causes.
- B. Install and cure fire-resistive joint systems per manufacturer's written instructions using natural means of ventilation or, where this is inadequate, forced-air circulation.

1.7 COORDINATION

- A. Coordinate construction of joints to ensure that fire-resistive joint systems are installed according to specified requirements.
- B. Coordinate sizing of joints to accommodate fire-resistive joint systems.
- C. Notify testing agency at least seven days in advance of fire-resistive joint system installations; confirm dates and times on day preceding each series of installations.

PART 2 - PRODUCTS

2.1 FIRE-RESISTIVE JOINT SYSTEMS

- A. Where required, provide fire-resistive joint systems that are produced and installed to resist spread of fire according to requirements indicated, resist passage of smoke and other gases, and maintain original fire-resistance rating of assemblies in or between which fire-resistive joint systems are installed. Fire-resistive joint systems shall accommodate building movements without impairing their ability to resist the passage of fire and hot gases.
- B. Available Products: Subject to compliance with requirements, fire-resistive joint systems that may be incorporated into the Work include those systems listed in the UL Fire-Resistance Directory.
 - 1. Listed system requirements such as construction of walls and floors, thickness of joint, packing material, and fire-rating must comply with system requirements as tested by UL.
 - 2. Acceptable manufacturers and products are those listed in the UL: Fire-Resistance Directory for the UL system involved.
- C. Joints in or between Fire-Resistance-Rated Construction: Provide fire-resistive joint systems with ratings determined per UL 2079:
- D. Exposed Fire-Resistive Joint Systems: Provide products with flame-spread and smoke-developed indexes of less than 25 and 450, respectively, as determined per ASTM E 84.

E. Accessories: Provide components of fire-resistive joint systems, including primers and forming materials, that are needed to install fill materials and to maintain ratings required. Use only components specified by fire-resistive joint system manufacturer and approved by the qualified testing agency for systems indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Installer present, for compliance with requirements for joint configurations, substrates, and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Cleaning: Clean joints immediately before installing fire-resistive joint systems to comply with fire-resistive joint system manufacturer's written instructions and the following requirements:
 - Remove from surfaces of joint substrates foreign materials that could interfere with adhesion of fill materials.
 - 2. Clean joint substrates to produce clean, sound surfaces capable of developing optimum bond with fill materials. Remove loose particles remaining from cleaning operation.
 - 3. Remove laitance and form-release agents from concrete.
- B. Priming: Prime substrates where recommended in writing by fire-resistive joint system manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.
- C. Masking Tape: Use masking tape to prevent fill materials of fire-resistive joint system from contacting adjoining surfaces that will remain exposed on completion of the Work and that would otherwise be permanently stained or damaged by such contact or by cleaning methods used to remove stains. Remove tape as soon as possible without disturbing fire-resistive joint system's seal with substrates.

3.3 INSTALLATION

- A. General: Install fire-resistive joint systems to comply with manufacturer's written installation instructions and published drawings for products and applications indicated.
- B. Install forming materials and other accessories of types required to support fill materials during their application and in position needed to produce cross-sectional shapes and depths required to achieve fire ratings indicated.
 - 1. After installing fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not indicated as permanent components of fire-resistive joint system.
- C. Install fill materials for fire-resistive joint systems by proven techniques to produce the following results:
 - Fill voids and cavities formed by joints and forming materials as required to achieve fireresistance ratings indicated.
 - 2. Apply fill materials so they contact and adhere to substrates formed by joints.
 - 3. For fill materials that will remain exposed after completing the Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.4 FIELD QUALITY CONTROL

A. Inspecting Agency: Coordinate with the testing agency to perform tests and inspections.

- B. Where deficiencies are found or fire-resistive joint systems are damaged or removed due to testing, repair or replace fire-resistive joint systems so they comply with requirements.
- C. Proceed with enclosing fire-resistive joint systems with other construction only after inspection reports are issued and installations comply with requirements.

3.5 CLEANING AND PROTECTING

- A. Clean off excess fill materials adjacent to joints as the Work progresses by methods and with cleaning materials that are approved in writing by fire-resistive joint system manufacturers and that do not damage materials in which joints occur.
- B. Provide final protection and maintain conditions during and after installation that ensure fire-resistive joint systems are without damage or deterioration at time of Substantial Completion. If damage or deterioration occurs despite such protection, cut out and remove damaged or deteriorated fire-resistive joint systems immediately and install new materials to produce fire-resistive joint systems complying with specified requirements.

3.6 FIRE-RESISTIVE JOINT SYSTEM SCHEDULE

- A. Where UL-classified systems are indicated, they refer to system numbers in UL's "Fire Resistance Directory" under product Category XHBN and Category XHDG.
- B. Wall-to-Wall, Fire-Resistive Joint Systems:
 - 1. UL-Classified Systems: WW-D- 0000-0999.
- C. Floor-to-Wall, Fire-Resistive Joint Systems:
 - 1. UL-Classified Systems: FW-D- 0000-0999.
- D. Head-of-Wall, Fire-Resistive Joint Systems:
 - UL-Classified Systems: HW-D- 0000-0999.
- E. Bottom-of-Wall, Fire-Resistive Joint Systems:
 - UL-Classified Systems: BW-D- 0000-0999.
- F. Perimeter Fire-Resistive Joint Systems:
 - 1. UL-Classified Perimeter Fire-Containment Systems: CW-D- 0000-0999.

END OF SECTION 078446

SECTION 079200 - JOINT SEALANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Silicone joint sealants.
- 2. Urethane joint sealants.
- 3. Latex joint sealants.
- 4. Acoustical joint sealants.

B. Related Sections:

- 1. Section 042000, "Unit Masonry" for masonry control and expansion joint fillers and gaskets.
- 2. Section 088000, "Glazing" for glazing sealants.
- 3. Section 0929000, "Gypsum Board" for sealing perimeter joints.
- 4. Section 095113, "Acoustical Panel Ceilings" for sealing edge moldings at perimeters with acoustical sealant.

1.3 PRECONSTRUCTION TESTING

- A. Preconstruction Compatibility and Adhesion Testing: Submit to joint-sealant manufacturers, for testing indicated below, samples of materials that will contact or affect joint sealants.
 - 1. Use ASTM C 1087 and manufacturer's standard test method to determine whether priming and other specific joint preparation techniques are required to obtain rapid, optimum adhesion of joint sealants to joint substrates.
 - 2. Submit not fewer than eight pieces of each kind of material, including joint substrates, shims, joint-sealant backings, secondary seals, and miscellaneous materials.
 - 3. Schedule sufficient time for testing and analyzing results to prevent delaying the Work.
 - 4. For materials failing tests, obtain joint-sealant manufacturer's written instructions for corrective measures including use of specially formulated primers.
 - 5. Testing will not be required if joint-sealant manufacturers submit joint preparation data that are based on previous testing, not older than 24 months, of sealant products for adhesion to, and compatibility with, joint substrates and other materials matching those submitted.
- B. Preconstruction Field-Adhesion Testing: Before installing sealants, field test their adhesion to Project joint substrates as follows:
 - 1. Locate test joints where indicated on Project or, if not indicated, as directed by Architect.
 - 2. Conduct field tests for each application indicated below:
 - a. Each kind of sealant and joint substrate indicated.
 - 3. Notify Architect seven days in advance of dates and times when test joints will be erected.
 - 4. Arrange for tests to take place with joint-sealant manufacturer's technical representative present.
 - a. Test Method: Test joint sealants according to Method A, Field-Applied Sealant Joint Hand Pull Tab, in Appendix X1 in ASTM C 1193 or Method A, Tail Procedure, in ASTM C 1521.
 - 1) For joints with dissimilar substrates, verify adhesion to each substrate separately; extend cut along one side, verifying adhesion to opposite side. Repeat procedure for opposite side.

- 5. Report whether sealant failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each kind of product and joint substrate. For sealants that fail adhesively, retest until satisfactory adhesion is obtained.
- 6. Evaluation of Preconstruction Field-Adhesion-Test Results: Sealants not evidencing adhesive failure from testing, in absence of other indications of noncompliance with requirements, will be considered satisfactory. Do not use sealants that fail to adhere to joint substrates during testing.

1.4 ACTION SUBMITTALS

- A. Product Data: For each joint-sealant product indicated.
- B. Samples for Verification: For each kind and color of joint sealant required, provide Samples with joint sealants in 1/2-inch- (13-mm-) wide joints formed between two 6-inch- (150-mm-) long strips of material matching the appearance of exposed surfaces adjacent to joint sealants.
- C. Joint-Sealant Schedule: Include the following information:
 - 1. Joint-sealant application and joint location.
 - 2. Joint-sealant manufacturer and product name.
 - 3. Joint-sealant formulation.
 - 4. Joint-sealant color.

1.5 INFORMATIONAL SUBMITTALS

- A. Sealant, Waterproofing, and Restoration Institute (SWRI) Validation Certificate: For each sealant specified to be validated by SWRI's Sealant Validation Program.
- B. Preconstruction Compatibility and Adhesion Test Reports: From sealant manufacturer, indicating the following:
 - 1. Materials forming joint substrates and joint-sealant backings have been tested for compatibility and adhesion with joint sealants.
 - 2. Interpretation of test results and written recommendations for primers and substrate preparation needed for adhesion.
- C. Preconstruction Field-Adhesion Test Reports: Indicate which sealants and joint preparation methods resulted in optimum adhesion to joint substrates based on testing specified in "Preconstruction Testing" Article.
- D. Field-Adhesion Test Reports: For each sealant application tested.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.
- B. Source Limitations: Obtain each kind of joint sealant from single source from single manufacturer.
- C. Product Testing: Test joint sealants using a qualified testing agency.
 - 1. Testing Agency Qualifications: An independent testing agency qualified according to ASTM C 1021 to conduct the testing indicated.
 - 2. Test according to SWRI's Sealant Validation Program for compliance with requirements specified by reference to ASTM C 920 for adhesion and cohesion under cyclic movement, adhesion-in-peel, and indentation hardness.

- D. Mockups: Install sealant in mockups of assemblies specified in other Sections that are indicated to receive joint sealants specified in this Section. Use materials and installation methods specified in this Section.
- E. Preinstallation Conference: Conduct conference at Project site.

1.7 PROJECT CONDITIONS

- A. Do not proceed with installation of joint sealants under the following conditions:
 - 1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer or are below 40 deg F (5 deg C).
 - 2. When joint substrates are wet.
 - 3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
 - 4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

1.8 WARRANTY

- A. Special Installer's Warranty: Manufacturer's standard form in which Installer agrees to repair or replace joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 - 1. Warranty Period: Two years from date of Substantial Completion.
- B. Special Manufacturer's Warranty: Manufacturer's standard form in which silicone joint-sealant manufacturer agrees to furnish joint sealants to repair or replace those that do not comply with performance and other requirements specified in this Section within specified warranty period.
 - 1. Warranty Period: 20 years from date of Substantial Completion.
- C. Special warranties specified in this article exclude deterioration or failure of joint sealants from the following:
 - 1. Movement of the structure caused by structural settlement or errors attributable to design or construction resulting in stresses on the sealant exceeding sealant manufacturer's written specifications for sealant elongation and compression.
 - 2. Disintegration of joint substrates from natural causes exceeding design specifications.
 - 3. Mechanical damage caused by individuals, tools, or other outside agents.
 - 4. Changes in sealant appearance caused by accumulation of dirt or other atmospheric contaminants.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

- A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.
- B. Liquid-Applied Joint Sealants: Comply with ASTM C 920 and other requirements indicated for each liquid-applied joint sealant specified, including those referencing ASTM C 920 classifications for type, grade, class, and uses related to exposure and joint substrates.
- C. Suitability for Contact with Food: Where sealants are indicated for joints that will come in repeated contact with food, provide products that comply with 21 CFR 177.2600.
- D. Colors of Exposed Joint Sealants shall be as follows:
 - 1. Joints separating two similar materials: match finish surface color.

- 2. Joints separating two dissimilar materials, such as perimeter joints around louvers, door frames, window frames, etc.: match wall surface color, except match mortar color in unpainted CMU and all other masonry walls.
- 3. Joints located in unpainted CMU and all other masonry walls: match mortar color.

2.2 SILICONE JOINT SEALANTS

- A. Single-Component, Nonsag, Neutral-Curing Silicone Joint Sealant: ASTM C 920, Type S, Grade NS, Class 100/50, for Use NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Corning Corporation; 790.
 - b. GE Advanced Materials Silicones; SilPruf LM SCS2700.
 - c. Pecora Corporation; 890.
 - d. Tremco Incorporated; Spectrem 1.
- B. Single-Component, Nonsag, Neutral-Curing Silicone Joint Sealant: ASTM C 920, Type S, Grade NS, Class 50, for Use NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Corning Corporation; 791 or 795.
 - b. GE Advanced Materials Silicones; SilGlaze II SCS2800 or SilPruf SCS2000.
 - c. Pecora Corporation; 864 or 895.
 - d. Tremco Incorporated; Spectrem 2 or Spectrem 3.
- C. Mildew-Resistant, Single-Component, Nonsag, Neutral-Curing Silicone Joint Sealant: ASTM C 920, Type S, Grade NS, Class 25, for Use NT.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Pecora Corporation; 898.

2.3 URETHANE JOINT SEALANTS

- A. Multicomponent, Nonsag, Traffic-Grade, Urethane Joint Sealant: ASTM C 920, Type M, Grade NS, Class 25, for Use T.
 - Products: Subject to compliance with requirements, provide one of the following:
 - a. BASF Building Systems; Sonolastic NP 2.
 - b. Pecora Corporation; Dynatred.
 - c. Sika Corporation, Construction Products Division; Sikaflex 2c NS.
 - d. Tremco Incorporated; Vulkem 227.

2.4 LATEX JOINT SEALANTS

- A. Latex Joint Sealant: Acrylic latex or siliconized acrylic latex, ASTM C 834, Type OP, Grade NF.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. BASF Building Systems; Sonolac.
 - b. May National Associates, Inc.; Bondaflex Sil-A 700.
 - c. Pecora Corporation; AC-20+.
 - d. Tremco Incorporated; Tremflex 834.

2.5 ACOUSTICAL JOINT SEALANTS

- A. Acoustical Joint Sealant: Manufacturer's standard nonsag, paintable, nonstaining latex sealant complying with ASTM C 834. Product effectively reduces airborne sound transmission through perimeter joints and openings in building construction as demonstrated by testing representative assemblies according to ASTM E 90.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Pecora Corporation; AC-20 FTR.
 - b. USG Corporation; SHEETROCK Acoustical Sealant.

2.6 JOINT SEALANT BACKING

- A. General: Provide sealant backings of material that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
- B. Cylindrical Sealant Backings: ASTM C 1330, Type C (closed-cell material with a surface skin) Type O (open-cell material) Type B (bicellular material with a surface skin) or any of the preceding types, as approved in writing by joint-sealant manufacturer for joint application indicated, and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance.
- C. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint. Provide self-adhesive tape where applicable.

2.7 MISCELLANEOUS MATERIALS

- A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.
- B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.
- C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting joint-sealant performance.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:
 - 1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.
 - 2. Clean porous joint substrate surfaces by brushing, grinding, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. Remove loose particles remaining after cleaning operations above by vacuuming or blowing out joints with oil-free compressed air. Porous joint substrates include the following:
 - a. Concrete.
 - b. Masonry.
 - c. Unglazed surfaces of tile.
 - 3. Remove laitance and form-release agents from concrete.

- 4. Clean nonporous joint substrate surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous joint substrates include the following:
 - a. Metal.
 - b. Glass.
 - c. Porcelain enamel.
 - d. Glazed surfaces of tile.
- B. Joint Priming: Prime joint substrates where recommended by joint-sealant manufacturer or as indicated by preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.
- C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.3 INSTALLATION OF JOINT SEALANTS

- A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.
- B. Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.
- C. Install sealant backings of kind indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
 - 1. Do not leave gaps between ends of sealant backings.
 - 2. Do not stretch, twist, puncture, or tear sealant backings.
 - 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.
- D. Install bond-breaker tape behind sealants where sealant backings are not used between sealants and backs of joints.
- E. Install sealants using proven techniques that comply with the following and at the same time backings are installed:
 - 1. Place sealants so they directly contact and fully wet joint substrates.
 - 2. Completely fill recesses in each joint configuration.
 - 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.
- F. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified in subparagraphs below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.
 - 1. Remove excess sealant from surfaces adjacent to joints.
 - 2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
 - 3. Provide concave joint profile per Figure 8A in ASTM C 1193, unless otherwise indicated or required by the joint sealant manufacturer.

G. Acoustical Sealant Installation: At wall assemblies with sound insulation and elsewhere as indicated, seal construction at perimeters, behind control joints, and at openings and penetrations with a continuous bead of acoustical sealant. Install acoustical sealant at both faces of partitions at perimeters and through penetrations. Comply with ASTM C 919 and with manufacturer's written recommendations.

3.4 FIELD QUALITY CONTROL

- A. Field-Adhesion Testing: Field test joint-sealant adhesion to joint substrates as follows:
 - 1. Extent of Testing: Test completed and cured sealant joints as follows:
 - a. Perform 10 tests for the first 1000 feet (300 m) of joint length for each kind of sealant and joint substrate.
 - b. Perform 1 test for each 1000 feet (300 m) of joint length thereafter or 1 test per each floor per elevation.
 - 2. Test Method: Test joint sealants according to Method A, Field-Applied Sealant Joint Hand Pull Tab, in Appendix X1 in ASTM C 1193 or Method A, Tail Procedure, in ASTM C 1521.
 - a. For joints with dissimilar substrates, verify adhesion to each substrate separately; extend cut along one side, verifying adhesion to opposite side. Repeat procedure for opposite side.
 - 3. Inspect tested joints and report on the following:
 - a. Whether sealants filled joint cavities and are free of voids.
 - b. Whether sealant dimensions and configurations comply with specified requirements.
 - c. Whether sealants in joints connected to pulled-out portion failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each kind of product and joint substrate. Compare these results to determine if adhesion passes sealant manufacturer's field-adhesion hand-pull test criteria.
 - 4. Record test results in a field-adhesion-test log. Include dates when sealants were installed, names of persons who installed sealants, test dates, test locations, whether joints were primed, adhesion results and percent elongations, sealant fill, sealant configuration, and sealant dimensions.
 - 5. Repair sealants pulled from test area by applying new sealants following same procedures used originally to seal joints. Ensure that original sealant surfaces are clean and that new sealant contacts original sealant.
- B. Evaluation of Field-Adhesion Test Results: Sealants not evidencing adhesive failure from testing or noncompliance with other indicated requirements will be considered satisfactory. Remove sealants that fail to adhere to joint substrates during testing or to comply with other requirements. Retest failed applications until test results prove sealants comply with indicated requirements.

3.5 CLEANING

A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

3.6 PROTECTION

A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately so installations with repaired areas are indistinguishable from original work.

3.7 JOINT-SEALANT SCHEDULE

- A. Joint-Sealant Application: Exterior joints in vertical surfaces and horizontal nontraffic surfaces.
 - Joint Locations:
 - a. Construction joints in cast-in-place concrete.

- b. Joints between plant-precast architectural concrete units.
- c. Control and expansion joints in unit masonry.
- d. Joints between metal panels.
- e. Joints between different materials listed above.
- f. Perimeter joints between materials listed above and frames of doors windows and louvers.
- g. Other joints as indicated.
- 2. Silicone Joint Sealant: Single component, nonsag, neutral curing, Class 100/50 and Single component, nonsag, neutral curing, Class 50. The type of silicone building sealant shall be selected for each area of application as recommended by the sealant manufacturer.
- B. Joint-Sealant Application: Interior joints in horizontal traffic surfaces.
 - 1. Joint Locations:
 - a. Isolation joints in cast-in-place concrete slabs.
 - b. Control and expansion joints in stone flooring.
 - c. Control and expansion joints in tile flooring.
 - d. Other joints as indicated.
 - 2. Urethane Joint Sealant: Multicomponent, nonsag, traffic grade, Class 25.
- C. Joint-Sealant Application: Interior joints in vertical surfaces and horizontal nontraffic surfaces.
 - Joint Locations:
 - a. Control and expansion joints on exposed interior surfaces of exterior walls.
 - b. Perimeter joints of exterior openings where indicated.
 - c. Tile control and expansion joints.
 - d. Vertical joints on exposed surfaces of interior unit masonry and concrete walls and partitions.
 - e. Perimeter joints between interior wall surfaces and frames of interior doors windows and elevator entrances.
 - f. Other joints as indicated.
 - 2. Joint Sealant: Latex.
- D. Joint-Sealant Application: Mildew-resistant interior joints in vertical surfaces and horizontal nontraffic surfaces.
 - 1. Joint Sealant Location:
 - a. Joints between plumbing fixtures and adjoining walls, floors, and counters.
 - b. Other joints as indicated.
 - 2. Joint Sealant: Mildew resistant, single component, nonsag, neutral curing, Silicone .
- E. Joint-Sealant Application: Interior acoustical joints in vertical surfaces and horizontal nontraffic surfaces.
 - 1. Joint Location:
 - a. Joints at partitions containing sound insulation.
 - b. Other joints as indicated.
 - 2. Joint Sealant: Acoustical.

END OF SECTION 079200

SECTION 081113 - HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes hollow-metal work.
- B. Related Requirements:
 - Section 087100 "Door Hardware" for door hardware for hollow-metal doors.

1.3 DEFINITIONS

A. Minimum Thickness: Minimum thickness of base metal without coatings according to NAAMM-HMMA 803 or SDI A250.8.

1.4 COORDINATION

A. Coordinate anchorage installation for hollow-metal frames. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors. Deliver such items to Project site in time for installation.

1.5 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.6 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - Include construction details, material descriptions, core descriptions, fire-resistance ratings, and finishes.
- B. Shop Drawings: Include the following:
 - 1. Elevations of each door type.
 - 2. Details of doors, including vertical- and horizontal-edge details and metal thicknesses.
 - 3. Frame details for each frame type, including dimensioned profiles and metal thicknesses.
 - 4. Locations of reinforcement and preparations for hardware.
 - 5. Details of each different wall opening condition.
 - 6. Details of anchorages, joints, field splices, and connections.
 - 7. Details of accessories.
 - 8. Details of moldings, removable stops, and glazing.
 - 9. Details of conduit and preparations for power, signal, and control systems.
- C. Schedule: Provide a schedule of hollow-metal work prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings. Coordinate with final Door Hardware Schedule.

1.7 INFORMATIONAL SUBMITTALS

A. Product Test Reports: For each type of hollow-metal door and frame assembly, for tests performed by a qualified testing agency.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Deliver hollow-metal work palletized, packaged, or crated to provide protection during transit and Project-site storage. Do not use nonvented plastic.
 - 1. Provide additional protection to prevent damage to factory-finished units.
- B. Deliver welded frames with two removable spreader bars across bottom of frames, tack welded to jambs and mullions.
- C. Store hollow-metal work vertically under cover at Project site with head up. Place on minimum 4-inch-(102-mm-) high wood blocking. Provide minimum 1/4-inch (6-mm) space between each stacked door to permit air circulation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ceco Door Products; an Assa Abloy Group company.
 - 2. Curries Company; an Assa Abloy Group company.
 - 3. Security Metal Products Corp.
 - 4. Steelcraft; an Ingersoll-Rand company.
- B. Source Limitations: Obtain hollow-metal work from single source from single manufacturer.

2.2 REGULATORY REQUIREMENTS

- A. Fire-Rated Assemblies: Complying with NFPA 80 and listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction for fire-protection ratings indicated, based on testing at positive pressure according to NFPA 252 or UL 10C.
 - 1. Smoke- and Draft-Control Assemblies: Provide an assembly with gaskets listed and labeled for smoke and draft control by a qualified testing agency acceptable to authorities having jurisdiction, based on testing according to UL 1784 and installed in compliance with NFPA 105.

2.3 INTERIOR DOORS AND FRAMES

- A. Construct interior doors and frames to comply with the standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.
- B. Extra-Heavy-Duty Doors and Frames: SDI A250.8, Level 3. .
 - 1. Physical Performance: Level A according to SDI A250.4.
 - 2. Doors:
 - a. Type: As indicated in the Door and Frame Schedule.
 - b. Thickness: 1-3/4 inches (44.5 mm).
 - c. Face: Uncoated, cold-rolled steel sheet, minimum thickness of 0.053 inch (1.3 mm).
 - d. Edge Construction: Model 2, Seamless
 - 1) Seams: Continuously weld and finish smooth.
 - e. Core: Vertical steel stiffener.

- 3. Frames:
 - a. Materials: Uncoated, steel sheet, minimum thickness of 0.053 inch (1.3 mm).
 - b. Construction: Full profile welded.
- 4. Exposed Finish: Prime.

2.4 EXTERIOR HOLLOW-METAL DOORS AND FRAMES

- A. Construct exterior doors and frames to comply with the standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.
- B. Maximum-Duty Doors and Frames: SDI A250.8, Level 4. .
 - 1. Physical Performance: Level A according to SDI A250.4.
 - 2. Doors:
 - a. Type: As indicated in the Door and Frame Schedule.
 - b. Thickness: 1-3/4 inches (44.5 mm.)
 - c. Face: Metallic-coated steel sheet, minimum thickness of 0.067 inch (1.7 mm), with minimum A40 (ZF120) coating.
 - d. Edge Construction: Model 2, Seamless.
 - 1) Seams: Continuously weld and finish smooth.
 - e. Core: Vertical steel stiffener.
 - 1) Thermal-Rated Doors: Provide doors fabricated with thermal-resistance value (R-value) of not less than 9.1 deg F X h sq. ft./Btu (1.602 K x sq. m/W) when tested according to ASTM C 1363.
 - 3. Frames:
 - a. Materials: Metallic-coated steel sheet, minimum thickness of 0.067 inch (1.7 mm), with minimum A40 (ZF120) coating.
 - b. Construction: Full profile welded.
 - Exposed Finish: Prime.

2.5 HOLLOW-METAL PANELS

A. Provide hollow-metal panels of same materials, construction, and finish as adjacent door assemblies.

2.6 FRAME ANCHORS

4.

- A. Jamb Anchors:
 - 1. Masonry Type: Adjustable strap-and-stirrup or T-shaped anchors to suit frame size, not less than 0.042 inch (1.0 mm) thick, with corrugated or perforated straps not less than 2 inches (51 mm) wide by 10 inches (254 mm) long; or wire anchors not less than 0.177 inch (4.5 mm) thick.
 - 2. Stud-Wall Type: Designed to engage stud, welded to back of frames; not less than 0.042 inch (1.0 mm) thick.
 - 3. Postinstalled Expansion Type for In-Place Concrete or Masonry: Minimum 3/8-inch- (9.5-mm-) diameter bolts with expansion shields or inserts. Provide pipe spacer from frame to wall, with throat reinforcement plate, welded to frame at each anchor location.
- B. Floor Anchors: Formed from same material as frames, minimum thickness of 0.042 inch (1.0 mm), and as follows:
 - 1. Monolithic Concrete Slabs: Clip-type anchors, with two holes to receive fasteners.
 - 2. Separate Topping Concrete Slabs: Adjustable-type anchors with extension clips, allowing not less than 2-inch (51-mm) height adjustment. Terminate bottom of frames at finish floor surface.

2.7 MATERIALS

A. Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B; suitable for exposed applications.

- B. Hot-Rolled Steel Sheet: ASTM A 1011/A 1011M, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.
- C. Metallic-Coated Steel Sheet: ASTM A 653/A 653M, Commercial Steel (CS), Type B.
- D. Frame Anchors: ASTM A 879/A 879M, Commercial Steel (CS), 04Z (12G) coating designation; mill phosphatized.
 - 1. For anchors built into exterior walls, steel sheet complying with ASTM A 1008/A 1008M or ASTM A 1011/A 1011M, hot-dip galvanized according to ASTM A 153/A 153M, Class B.
- E. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A 153/A 153M.
- F. Power-Actuated Fasteners in Concrete: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other accessory devices for attaching hollowmetal frames of type indicated.
- G. Grout: ASTM C 476, except with a maximum slump of 4 inches (102 mm), as measured according to ASTM C 143/C 143M.
- H. Bituminous Coating: Cold-applied asphalt mastic, compounded for 15-mil (0.4-mm) dry film thickness per coat. Provide inert-type noncorrosive compound free of asbestos fibers, sulfur components, and other deleterious impurities.

2.8 FABRICATION

- A. Fabricate hollow-metal work to be rigid and free of defects, warp, or buckle. Accurately form metal to required sizes and profiles, with minimum radius for metal thickness. Where practical, fit and assemble units in manufacturer's plant. To ensure proper assembly at Project site, clearly identify work that cannot be permanently factory assembled before shipment.
- B. Hollow-Metal Doors:
 - 1. Steel-Stiffened Door Cores: Provide minimum thickness 0.026 inch (0.66 mm), steel vertical stiffeners of same material as face sheets extending full-door height, with vertical webs spaced not more than 6 inches (152 mm) apart. Spot weld to face sheets no more than 5 inches (127 mm) o.c. Fill spaces between stiffeners with glass- or mineral-fiber insulation.
 - 2. Fire Door Cores: As required to provide fire-protection ratings indicated.
 - 3. Vertical Edges for Single-Acting Doors: Provide beveled or square edges at manufacturer's discretion.
 - 4. Top Edge Closures: Close top edges of doors with inverted closures of same material as face sheets.
 - a. Provide flush closures at exterior doors.
 - 5. Bottom Edge Closures: Close bottom edges of doors with end closures or channels of same material as face sheets.
 - a. Provide flush closures at exterior doors.
 - 6. Exterior Doors: Provide weep-hole openings in bottoms of exterior doors to permit moisture to escape. Seal joints in top edges of doors against water penetration.
- C. Hollow-Metal Frames: Where frames are fabricated in sections due to shipping or handling limitations, provide alignment plates or angles at each joint, fabricated of same thickness metal as frames.
 - 1. Sidelight Frames: Provide closed tubular members with no visible face seams or joints, fabricated from same material as door frame. Fasten members at crossings and to jambs by butt welding.
 - 2. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.
 - 3. Grout Guards: Weld guards to frame at back of hardware mortises in frames to be grouted.

- 4. Floor Anchors: Weld anchors to bottoms of jambs with at least four spot welds per anchor; however, for slip-on drywall frames, provide anchor clips or countersunk holes at bottoms of jambs.
- 5. Jamb Anchors: Provide number and spacing of anchors as follows:
 - a. Masonry Type: Locate anchors not more than 16 inches (406 mm) from top and bottom of frame. Space anchors not more than 24 inches (610 mm) o.c., to match coursing.
 - b. Stud-Wall Type: Locate anchors not more than 18 inches (457 mm) from top and bottom of frame. Space anchors not more than 24 inches (610 mm) o.c.
 - c. Postinstalled Expansion Type: Locate anchors not more than 6 inches (152 mm) from top and bottom of frame. Space anchors not more than 26 inches (660 mm) o.c.
 - d. Provide additional anchors as required to comply with published listing of qualified testing agency where required to achieve fire performance rating shown.
- 6. Head Anchors: Two anchors per head for frames more than 42 inches (1067 mm) wide and mounted in metal-stud partitions.
- 7. Door Silencers: Except on weather-stripped frames, drill stops to receive door silencers as follows. Keep holes clear during construction.
 - a. Single-Door Frames: Drill stop in strike jamb to receive three door silencers.
 - b. Double-Door Frames: Drill stop in head jamb to receive two door silencers.
- D. Fabricate concealed stiffeners and edge channels from either cold- or hot-rolled steel sheet.
- E. Hardware Preparation: Factory prepare hollow-metal work to receive templated mortised hardware; include cutouts, reinforcement, mortising, drilling, and tapping according to SDI A250.6, the Door Hardware Schedule, and templates.
 - 1. Reinforce doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.
 - 2. Hardware Reinforcement, Doors:
 - a. Fabricate reinforcement plates from same material as door face sheets. Thickness shall be not less than that listed for the various purposes in Table IV of "Recommended Specifications ANSI/SDI A250.8," published by Steel Door Institute. Hinge reinforcement shall be 1/4 inch (6.4 mm) thick continuous from top to bottom of door edges, or shall be a continuous 0.093 inch (2.3 mm) channel with each face sheet wrapped around the channel meeting at the center of the edge, with the resulting seam closed and continuously welded meeting the requirements previously specified. Joint between face sheets shall be invisible seam type.
 - 3. Hardware Reinforcement, Frames:
 - a. Fabricate reinforcement plates from same material as frames. Minimum hinge reinforcement shall be 0.167 inch (4.2 mm) for masonry wall frames and 0.123 inch (3.0 mm) for drywall frames. Minimum reinforcement thickness for strikes, surface-applied closers, hold-open devices, etc., shall be 0.093 inch (2.3 mm). Length shall be as required to suit condition of hardware items.
 - In accordance with ANSI A250.6, 0.067 inch (1.6 mm) metal may be used in lieu of flat plate reinforcements if it is channel-shaped and if the tapped holes are extruded to provide an equivalent number of threads as would be incorporated in the specified thickness. Thickness and size of reinforcement for hardware items not listed above shall be required by templates for those items.
 - b. Hardware Reinforcement: Fabricate reinforcement plates from same material as frames. Frame reinforcement shall be high-frequency hinge reinforcement at each hinge location. Conform with example "A", SDI 111-H requirements except as specified in this Section.
 - 1) Closer and holder-arm reinforcement shall be 1/4 inch (6.4 mm) thick.
- F. Stops and Moldings: Provide stops and moldings around glazed lites and louvers where indicated. Form corners of stops and moldings with butted or mitered hairline joints.
 - Single Glazed Lites: Provide fixed stops and moldings welded on secure side of hollow-metal work.

- 2. Multiple Glazed Lites: Provide fixed and removable stops and moldings so that each glazed lite is capable of being removed independently.
- 3. Provide fixed frame moldings on outside of exterior and on secure side of interior doors and frames.
- 4. Provide loose stops and moldings on inside of hollow-metal work.
- 5. Coordinate rabbet width between fixed and removable stops with glazing and installation types indicated.

2.9 STEEL FINISHES

- A. Prime Finish: Clean, pretreat, and apply manufacturer's standard primer, including back surfaces of all frames.
 - 1. Shop Primer: Manufacturer's standard, fast-curing, lead- and chromate-free primer complying with SDI A250.10; recommended by primer manufacturer for substrate; compatible with substrate and field-applied coatings despite prolonged exposure.

2.10 ACCESSORIES

- A. Mullions and Transom Bars: Join to adjacent members by welding or rigid mechanical anchors.
- B. Grout Guards: Formed from same material as frames, not less than 0.016 inch (0.4 mm) thick.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for embedded and built-in anchors to verify actual locations before frame installation.
- C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Remove welded-in shipping spreaders installed at factory. Restore exposed finish by grinding, filling, and dressing, as required to make repaired area smooth, flush, and invisible on exposed faces.
- B. Drill and tap doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.

3.3 INSTALLATION

- A. General: Install hollow-metal work plumb, rigid, properly aligned, and securely fastened in place. Comply with Drawings and manufacturer's written instructions.
- B. Hollow-Metal Frames: Install hollow-metal frames of size and profile indicated. Comply with SDI A250.11.
 - 1. Set frames accurately in position; plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces, leaving surfaces smooth and undamaged.
 - a. At fire-rated openings, install frames according to NFPA 80.

- b. Where frames are fabricated in sections because of shipping or handling limitations, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces.
- c. Install frames with removable stops located on secure side of opening.
- d. Install door silencers in frames before grouting.
- e. Grout frames in masonry walls and partitions full with mortar as masonry is laid.
- f. Grout frames in drywall partitions by spot grouting the jamb anchors of steel door frames.
- g. Grout inside surface of rabbeted stop to reduce sound of closing door.
- h. Grout frames in stud partitions for sound-dampening before setting in place. Fill each jamb with grout, laid horizontal with throat facing up, to a face depth allowing installation of wall substrates. Allow grout to cure before frame installation.
- i. Brace frames to prevent pressure of grout from deforming frame members.
- j. Remove temporary braces necessary for installation only after frames have been properly set and secured.
- k. Check plumb, square, and twist of frames as walls are constructed. Shim as necessary to comply with installation tolerances.
- 1. Field apply bituminous coating to backs of frames that will be filled with grout containing antifreezing agents.
- 2. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor, and secure with postinstalled expansion anchors.
 - a. Floor anchors may be set with power-actuated fasteners instead of postinstalled expansion anchors if so indicated and approved on Shop Drawings.
- 3. Metal-Stud Partitions: Solidly pack mineral-fiber insulation inside void spaces of frames.
- 4. Masonry Walls: Coordinate installation of frames to allow for solidly filling space between frames and masonry with grout.
- 5. Installation Tolerances: Adjust hollow-metal door frames for squareness, alignment, twist, and plumb to the following tolerances:
 - a. Squareness: Plus or minus 1/16 inch (1.6 mm), measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
 - b. Alignment: Plus or minus 1/16 inch (1.6 mm), measured at jambs on a horizontal line parallel to plane of wall.
 - c. Twist: Plus or minus 1/16 inch (1.6 mm), measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
 - d. Plumbness: Plus or minus 1/16 inch (1.6 mm), measured at jambs at floor.
- C. Hollow-Metal Doors: Fit hollow-metal doors accurately in frames, within clearances specified below. Shim as necessary.
 - Non-Fire-Rated Steel Doors:
 - a. Between Door and Frame Jambs and Head: 1/8 inch (3.2 mm) plus or minus 1/32 inch (0.8 mm).
 - b. Between Edges of Pairs of Doors: 1/8 inch (3.2 mm) to 1/4 inch (6.3 mm) plus or minus 1/32 inch (0.8 mm).
 - c. At Bottom of Door: Maximum 3/4 inch (19.1 mm).
 - d. Between Door Face and Stop: 1/16 inch (1.6 mm) to 1/8 inch (3.2 mm) plus or minus 1/32 inch (0.8 mm).
 - 2. Fire-Rated Doors: Install doors with clearances according to NFPA 80.
 - 3. Smoke-Control Doors: Install doors and gaskets according to NFPA 105.
- D. Glazing: Comply with installation requirements in Section 088000 "Glazing" and with hollow-metal manufacturer's written instructions.
 - 1. Secure stops with countersunk flat- or oval-head machine screws spaced uniformly not more than 9 inches (230 mm) o.c. and not more than 2 inches (51 mm) o.c. from each corner.

3.4 ADJUSTING AND CLEANING

- A. Final Adjustments: Check and readjust operating hardware items immediately before final inspection. Leave work in complete and proper operating condition. Remove and replace defective work, including hollow-metal work that is warped, bowed, or otherwise unacceptable.
- B. Remove grout and other bonding material from hollow-metal work immediately after installation.
- C. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.
- D. Metallic-Coated Surface Touchup: Clean abraded areas and repair with galvanizing repair paint according to manufacturer's written instructions.
- E. Touchup Painting: Cleaning and touchup painting of abraded areas of paint are specified in painting Sections.

END OF SECTION 081113

SECTION 081416 - FLUSH WOOD DOORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Solid-core doors with wood-veneer faces.
 - 2. Factory finishing flush wood doors.
- B. Related Requirements:
 - 1. Section 088000 "Glazing" for glass view panels in flush wood doors.
 - 2. Section 099123 "Interior Painting" for field finishing doors.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of door. Include details of core and edge construction and trim for openings. Include factory-finishing specifications.
- B. Shop Drawings: Indicate location, size, and hand of each door; elevation of each kind of door; construction details not covered in Product Data; and the following:
 - 1. Dimensions and locations of blocking.
 - 2. Dimensions and locations of mortises and holes for hardware.
 - 3. Dimensions and locations of cutouts.
 - 4. Undercuts.
 - 5. Requirements for veneer matching.
 - 6. Doors to be factory finished and finish requirements.
 - 7. Fire-protection ratings for fire-rated doors.

C. Samples for Verification:

1. Factory finishes applied to actual door face materials, approximately 8 by 10 inches (200 by 250 mm), for each material and finish.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Comply with requirements of referenced standard and manufacturer's written instructions.
- B. Package doors individually in plastic bags or cardboard cartons.
- C. Mark each door on bottom rail with opening number used on Shop Drawings.

1.6 FIELD CONDITIONS

A. Environmental Limitations: Do not deliver or install doors until spaces are enclosed and weathertight, wet work in spaces is complete and dry, and HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during remainder of construction period.

1.7 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace doors that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Warping (bow, cup, or twist) more than 1/4 inch (6.4 mm) in a 42-by-84-inch (1067-by-2134-mm) section.
 - b. Telegraphing of core construction in face veneers exceeding 0.01 inch in a 3-inch (0.25 mm in a 76.2-mm) span.
 - 2. Warranty Period for Solid-Core Interior Doors: Life of installation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Algoma Hardwoods, Inc.
 - 2. Eggers Industries.
 - 3. Marshfield Door Systems, Inc.
 - 4. VT Industries, Inc.
- B. Source Limitations: Obtain flush wood doors from single manufacturer.

2.2 FLUSH WOOD DOORS, GENERAL

- A. Quality Standard: In addition to requirements specified, comply with WDMA I.S.1-A, "Architectural Wood Flush Doors."
 - Contract Documents contain selections chosen from options in quality standard and additional requirements beyond those of quality standard. Comply with those selections and requirements in addition to quality standard.
- B. WDMA I.S.1-A Performance Grade: Extra Heavy Duty.
- C. Fire-Rated Wood Doors: Doors complying with NFPA 80 that are listed and labeled by a qualified testing agency, for fire-protection ratings indicated, based on testing at positive pressure according to NFPA 252 or UL 10C.
 - 1. Temperature-Rise Limit: At vertical exit enclosures and exit passageways, provide doors that have a maximum transmitted temperature end point of not more than 450 deg F (250 deg C) above ambient after 30 minutes of standard fire-test exposure.
 - 2. Cores: Provide core specified or mineral core as needed to provide fire-protection rating indicated.
 - 3. Edge Construction: Provide edge construction with intumescent seals concealed by outer stile. Comply with specified requirements for exposed edges.
- D. Smoke- and Draft-Control Door Assemblies: Listed and labeled for smoke and draft control, based on testing according to UL 1784.

- E. Structural-Composite-Lumber-Core Doors:
 - 1. Structural Composite Lumber: WDMA I.S.10.
 - a. Screw Withdrawal, Face: 700 lbf (3100 N).
 - b. Screw Withdrawal, Edge: 400 lbf (1780 N).

2.3 VENEER-FACED DOORS FOR TRANSPARENT FINISH

- A. Interior Solid-Core Doors:
 - 1. Grade: Premium, with Grade A faces.
 - 2. Species: Red oak.
 - 3. Cut: Plain sliced (flat sliced).
 - 4. Match between Veneer Leaves: Book match.
 - 5. Assembly of Veneer Leaves on Door Faces: Running match.
 - 6. Blueprint Match: Where indicated, provide doors with faces produced from same flitches as adjacent wood paneling and arranged to provide blueprint match with wood paneling. Comply with requirements in Section 064216 "Flush Wood Paneling."
 - 7. Exposed Vertical Edges: Same species as faces edge Type A.
 - 8. Core: Particleboard or Structural composite lumber as required for the conditions previously specified.
 - 9. Construction: Five plies. Stiles and rails are bonded to core, then entire unit is abrasive planed before veneering. Faces are bonded to core using a hot press.

2.4 LIGHT FRAMES

- Wood Beads for Light Openings in Wood Doors: Provide manufacturer's standard wood beads unless otherwise indicated.
 - 1. Wood Species: Same species as door faces.
 - 2. Profile: Manufacturer's standard shape.
 - 3. At wood-core doors with 20-minute fire-protection ratings, provide wood beads and metal glazing clips approved for such use.

2.5 FABRICATION

- A. Factory fit doors to suit frame-opening sizes indicated. Comply with clearance requirements of referenced quality standard for fitting unless otherwise indicated.
 - 1. Comply with NFPA 80 requirements for fire-rated doors.
- B. Factory machine doors for hardware that is not surface applied. Locate hardware to comply with DHI-WDHS-3. Comply with final hardware schedules, door frame Shop Drawings, BHMA-156.115-W, and hardware templates.
 - 1. Coordinate with hardware mortises in metal frames to verify dimensions and alignment before factory machining.
- C. Openings: Factory cut and trim openings through doors.
 - 1. Light Openings: Trim openings with moldings of material and profile indicated.
 - 2. Glazing: Factory install glazing in doors indicated to be factory finished. Comply with applicable requirements in Section 088000 "Glazing."

2.6 SHOP PRIMING

A. Doors for Transparent Finish: Shop prime faces and all four edges with stain (if required), other required pretreatments, and first coat of finish as specified in Section 099300 "Staining and Transparent Finishing." Seal edges of cutouts and mortises with first coat of finish.

2.7 FACTORY FINISHING

- A. General: Comply with referenced quality standard for factory finishing. Complete fabrication, including fitting doors for openings and machining for hardware that is not surface applied, before finishing.
 - 1. Finish faces, all four edges, edges of cutouts, and mortises. Stains and fillers may be omitted on bottom edges, edges of cutouts, and mortises.
- B. Factory finish doors.
- C. Transparent Finish:
 - 1. Grade: Premium.
 - 2. Finish: WDMA TR-6 catalyzed polyurethane.
 - 3. Staining: None required.
 - 4. Effect: Semifilled finish, produced by applying an additional finish coat to partially fill the wood pores.
 - 5. Sheen: Satin.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine doors and installed door frames, with Installer present, before hanging doors.
 - 1. Verify that installed frames comply with indicated requirements for type, size, location, and swing characteristics and have been installed with level heads and plumb jambs.
 - 2. Reject doors with defects.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Hardware: For installation, see Section 087100 "Door Hardware."
- B. Installation Instructions: Install doors to comply with manufacturer's written instructions and referenced quality standard, and as indicated.
 - 1. Install fire-rated doors according to NFPA 80.
 - 2. Install smoke- and draft-control doors according to NFPA 105.
- C. Job-Fitted Doors: Align and fit doors in frames with uniform clearances and bevels as indicated below; do not trim stiles and rails in excess of limits set by manufacturer or permitted for fire-rated doors. Machine doors for hardware. Seal edges of doors, edges of cutouts, and mortises after fitting and machining.
 - 1. Clearances: Provide 1/8 inch (3.2 mm) at heads, jambs, and between pairs of doors. Provide 1/8 inch (3.2 mm) from bottom of door to top of decorative floor finish or covering unless otherwise indicated. Where threshold is shown or scheduled, provide 1/4 inch (6.4 mm) from bottom of door to top of threshold unless otherwise indicated.
 - a. Comply with NFPA 80 for fire-rated doors.
 - 2. Bevel non-fire-rated doors 1/8 inch in 2 inches (3-1/2 degrees) at lock and hinge edges.
 - 3. Bevel fire-rated doors 1/8 inch in 2 inches (3-1/2 degrees) at lock edge; trim stiles and rails only to extent permitted by labeling agency.
- D. Factory-Finished Doors: Restore finish before installation if fitting or machining is required at Project site.

3.3 ADJUSTING

- A. Operation: Rehang or replace doors that do not swing or operate freely.
- B. Finished Doors: Replace doors that are damaged or that do not comply with requirements. Doors may be repaired or refinished if Work complies with requirements and shows no evidence of repair or refinishing.

END OF SECTION 081416

SECTION 084113 - ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Exterior storefront framing.
 - 2. Exterior manual-swing entrance doors and door-frame units.

1.3 DEFINITIONS

A. ADA/ABA Accessibility Guidelines: U.S. Architectural & Transportation Barriers Compliance Board's "Americans with Disability Act (ADA) and Architectural Barriers Act (ABA) Accessibility Guidelines for Buildings and Facilities."

1.4 PERFORMANCE REQUIREMENTS

- A. General Performance: Aluminum-framed systems shall withstand the effects of the following performance requirements without exceeding performance criteria or failure due to defective manufacture, fabrication, installation, or other defects in construction:
 - 1. Movements of supporting structure indicated on Drawings including, but not limited to, story drift and deflection from uniformly distributed and concentrated live loads.
 - 2. Dimensional tolerances of building frame and other adjacent construction.
 - 3. Failure includes the following:
 - a. Deflection exceeding specified limits.
 - b. Thermal stresses transferring to building structure.
 - Framing members transferring stresses, including those caused by thermal and structural movements to glazing.
 - d. Glazing-to-glazing contact.
 - e. Noise or vibration created by wind and by thermal and structural movements.
 - f. Loosening or weakening of fasteners, attachments, and other components.
 - g. Sealant failure.
 - h. Failure of operating units.
- B. Delegated Design: Design aluminum-framed systems, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- C. Structural Loads:
 - 1. Wind Loads: As indicated on Drawings...
 - a. Basic Wind Speed: 90 mph (40 m/s).
 - b. Importance Factor: 1.15.
 - c. Exposure Category: B.
 - 2. Seismic Loads: As indicated on Drawings.

- D. Deflection of Framing Members:
 - 1. Deflection Normal to Wall Plane: Limited to edge of glass in a direction perpendicular to glass plane shall not exceed L/175 of the glass edge length for each individual glazing lite or an amount that restricts edge deflection of individual glazing lites to 3/4 inch (19 mm), whichever is less.
 - 2. Deflection Parallel to Glazing Plane: Limited to L/360 of clear span or 1/8 inch (3.2 mm), whichever is smaller.
- E. Structural-Test Performance: Provide aluminum-framed systems tested according to ASTM E 330 as follows:
 - 1. When tested at positive and negative wind-load design pressures, systems do not evidence deflection exceeding specified limits.
 - 2. When tested at 150 percent of positive and negative wind-load design pressures, systems, including anchorage, do not evidence material failures, structural distress, and permanent deformation of main framing members exceeding 0.2 percent of span.
 - 3. Test Durations: As required by design wind velocity, but not fewer than 10 seconds.
- F. Air Infiltration: Provide aluminum-framed systems with maximum air leakage through fixed glazing and framing areas of 0.06 cfm/sq. ft. (0.03 L/s per sq. m) of fixed wall area when tested according to ASTM E 283 at a minimum static-air-pressure difference of 1.57 lbf/sq. ft. (75 Pa).
- G. Water Penetration under Static Pressure: Provide aluminum-framed systems that do not evidence water penetration through fixed glazing and framing areas when tested according to ASTM E 331 at a minimum static-air-pressure difference of 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft. (300 Pa).
- H. Thermal Movements: Provide aluminum-framed systems that allow for thermal movements resulting from the following maximum change (range) in ambient and surface temperatures. Base engineering calculation on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 - 1. Temperature Change (Range): 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.
- I. Condensation Resistance: Provide aluminum-framed systems with fixed glazing and framing areas having condensation-resistance factor (CRF) of not less than 45 when tested according to AAMA 1503.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for aluminum-framed systems.
- B. Shop Drawings: For aluminum-framed systems. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Include details of provisions for system expansion and contraction and for drainage of moisture in the system to the exterior.
 - 2. For entrance doors, include hardware schedule and indicate operating hardware types, functions, quantities, and locations.
- C. Samples for Verification: For each type of exposed finish required, in manufacturer's standard sizes.
- D. Other Action Submittals:
 - 1. Entrance Door Hardware Schedule: Prepared by or under the supervision of supplier, detailing fabrication and assembly of entrance door hardware, as well as procedures and diagrams. Coordinate final entrance door hardware schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of entrance door hardware.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Warranties: Sample of special warranties.

1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For aluminum-framed systems to include in maintenance manuals.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.
- B. Product Options: Information on Drawings and in Specifications establishes requirements for systems' aesthetic effects and performance characteristics. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction. Performance characteristics are indicated by criteria subject to verification by one or more methods including preconstruction testing, field testing, and in-service performance.
 - 1. Do not revise intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If revisions are proposed, submit comprehensive explanatory data to Architect for review.
- C. Accessible Entrances: Comply with applicable provisions in the U.S. Architectural & Transportation Barriers Compliance Board's ADA-ABA Accessibility Guidelines and ICC/ANSI A117.1.
- D. Source Limitations for Aluminum-Framed Systems: Obtain from single source from single manufacturer.
- E. Preinstallation Conference: Conduct conference at Project site.

1.9 PROJECT CONDITIONS

A. Field Measurements: Verify actual locations of structural supports for aluminum-framed systems by field measurements before fabrication and indicate measurements on Shop Drawings.

1.10 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of aluminum-framed systems that do not comply with requirements or that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including, but not limited to, excessive deflection.
 - b. Noise or vibration caused by thermal movements.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 - d. Adhesive or cohesive sealant failures.
 - e. Water leakage through fixed glazing and framing areas.
 - f. Failure of operating components.
 - 2. Warranty Period: Five years from date of Substantial Completion.
- B. Special Finish Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components on which finishes do not comply with requirements or that fail in materials or workmanship within specified warranty period. Warranty does not include normal weathering.
 - 1. Warranty Period: 10 years from date of Substantial Completion.

1.11 MAINTENANCE SERVICE

A. Entrance Door Hardware:

- 1. Maintenance Tools and Instructions: Furnish a complete set of specialized tools and maintenance instructions as needed for Owner's continued adjustment, maintenance, and removal and replacement of entrance door hardware.
- 2. Initial Maintenance Service: Beginning at Substantial Completion, provide six months' full maintenance by skilled employees of entrance door hardware Installer. Include quarterly preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper entrance door hardware operation at rated speed and capacity. Provide parts and supplies the same as those used in the manufacture and installation of original equipment.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. EFCO Corporation.
 - 2. Kawneer North America; an Alcoa company.
 - 3. TRACO.
 - 4. Tubelite.
 - 5. United States Aluminum.
 - 6. Vistawall Architectural Products; The Vistawall Group; a Bluescope Steel company.

2.2 MATERIALS

- A. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
 - 1. Sheet and Plate: ASTM B 209 (ASTM B 209M).
 - 2. Extruded Bars, Rods, Profiles, and Tubes: ASTM B 221 (ASTM B 221M).
 - 3. Extruded Structural Pipe and Tubes: ASTM B 429.
 - 4. Structural Profiles: ASTM B 308/B 308M.
 - 5. Welding Rods and Bare Electrodes: AWS A5.10/A5.10M.
- B. Steel Reinforcement: Manufacturer's standard zinc-rich, corrosion-resistant primer, complying with SSPC-PS Guide No. 12.00; applied immediately after surface preparation and pretreatment. Select surface preparation methods according to recommendations in SSPC-SP COM and prepare surfaces according to applicable SSPC standard.
 - 1. Structural Shapes, Plates, and Bars: ASTM A 36/A 36M.
 - 2. Cold-Rolled Sheet and Strip: ASTM A 1008/A 1008M.
 - 3. Hot-Rolled Sheet and Strip: ASTM A 1011/A 1011M.

2.3 FRAMING SYSTEMS

- A. Framing Members: Manufacturer's standard extruded-aluminum framing members of thickness required and reinforced as required to support imposed loads.
 - 1. Construction: Thermally broken.
 - 2. Glazing System: Retained mechanically with gaskets on four sides.
- B. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning system components.
- C. Fasteners and Accessories: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding fasteners and accessories compatible with adjacent materials.

- 1. Use self-locking devices where fasteners are subject to loosening or turning out from thermal and structural movements, wind loads, or vibration.
- 2. Reinforce members as required to receive fastener threads.
- D. Concrete and Masonry Inserts: Hot-dip galvanized cast-iron, malleable-iron, or steel inserts, complying with ASTM A 123/A 123M or ASTM A 153/A 153M.
- E. Concealed Flashing: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding flashing compatible with adjacent materials.
- F. Framing System Gaskets and Sealants: Manufacturer's standard, recommended by manufacturer for joint type.

2.4 GLAZING SYSTEMS

- A. Glazing: As specified in Section 088000 "Glazing."
- B. Glazing Gaskets: Manufacturer's standard compression types; replaceable, molded or extruded, of profile and hardness required to maintain watertight seal.
- C. Spacers and Setting Blocks: Manufacturer's standard elastomeric type.
- D. Bond-Breaker Tape: Manufacturer's standard TFE-fluorocarbon or polyethylene material to which sealants will not develop adhesion.

2.5 ENTRANCE DOOR SYSTEMS

- A. Entrance Doors: Manufacturer's standard glazed entrance doors for manual-swing operation.
 - 1. Door Construction: 1-3/4-inch (44.5-mm) overall thickness, with minimum 0.125-inch- (3.2-mm) thick, extruded-aluminum tubular rail and stile members. Mechanically fasten corners with reinforcing brackets that are deeply penetrated and fillet welded or that incorporate concealed tie rods.
 - 2. Door Design: Match existing aluminum doors, ground level.
 - a. Accessible Doors: Smooth surfaced for width of door in area within 10 inches (255 mm) above floor or ground plane.
 - 3. Glazing Stops and Gaskets: Square, snap-on, extruded-aluminum stops and preformed gaskets.
 - a. Provide nonremovable glazing stops on outside of door.

2.6 ENTRANCE DOOR HARDWARE

- A. Hardware is specified in Section 087100 "Door Hardware", except as otherwise specified in this Section.
- B. General: Provide entrance door hardware and entrance door hardware sets indicated in door and frame schedule for each entrance door to comply with requirements in this Section.
 - 1. Entrance Door Hardware Sets: Provide quantity, item, size, finish or color indicated, and products complying with BHMA standard referenced.
 - 2. Opening-Force Requirements:
 - a. Egress Doors: Not more than 15 lbf (67 N) to release the latch and not more than 30 lbf (133 N)to set the door in motion and not more than 15 lbf (67 N) to open the door to its minimum required width.
- C. Designations: Requirements for design, grade, function, finish, size, and other distinctive qualities of each type of entrance door hardware are indicated in "Entrance Door Hardware Sets" Article. Products are identified by using entrance door hardware designations as follows:

- 1. Named Manufacturers' Products: Manufacturer and product designation are listed for each door hardware type required for the purpose of establishing minimum requirements. Manufacturers' names are abbreviated in "Entrance Door Hardware Sets" Article.
- 2. References to BHMA Standards: Provide products complying with these standards and requirements for description, quality, and function.
- D. Opening-Force Requirements:
 - 1. Latches and Exit Devices: Not more than 15 lbf (67 N) required to release latch.
- E. Continuous-Gear Hinges: Manufacturer's standard with stainless-steel bearings between knuckles, fabricated to full height of door and frame.
- F. Mortise Auxiliary Locks: BHMA A156.5, Grade 1.
- G. Panic Exit Devices: BHMA A156.3, Grade 1, listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for panic protection, based on testing according to UL 305.
- H. Cylinders: As specified in Section 087100 "Door Hardware."
- I. Strikes: Provide strike with black-plastic dust box for each latch or lock bolt; fabricated for aluminum framing.
- J. Operating Trim: BHMA A156.6.
- K. Removable Mullions: BHMA A156.3, extruded aluminum.
 - 1. When used with panic exit devices, provide removable mullions listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for panic protection, based on testing according to UL 305. Use only mullions that have been tested with exit devices to be used.
- L. Closers: BHMA A156.4, Grade 1, with accessories required for a complete installation, sized as required by door size, exposure to weather, and anticipated frequency of use; adjustable to meet field conditions and requirements for opening force.
- M. Surface-Mounted Holders: BHMA A156.16, Grade 1.
- N. Door Stops: BHMA A156.16, Grade 1, floor or wall mounted, as appropriate for door location indicated, with integral rubber bumper.
- O. Weather Stripping: Manufacturer's standard replaceable components.
 - 1. Compression Type: Made of ASTM D 2000, molded neoprene, or ASTM D 2287, molded PVC.
 - 2. Sliding Type: AAMA 701, made of wool, polypropylene, or nylon woven pile with nylon-fabric or aluminum-strip backing.
- P. Weather Sweeps: Manufacturer's standard exterior-door bottom sweep with concealed fasteners on mounting strip.
- Q. Silencers: BHMA A156.16, Grade 1.
- R. Thresholds: BHMA A156.21, raised thresholds beveled with a slope of not more than 1:2, with maximum height of 1/2 inch (13 mm).

2.7 ACCESSORY MATERIALS

A. Joint Sealants: For installation at perimeter of aluminum-framed systems, as specified in Section 079200 "Joint Sealants."

- 1. Sealants used inside the weatherproofing system shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- B. Bituminous Paint: Cold-applied, asphalt-mastic paint complying with SSPC-Paint 12 requirements except containing no asbestos; formulated for 30-mil (0.762-mm) thickness per coat.

2.8 FABRICATION

- A. Form or extrude aluminum shapes before finishing.
- B. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.
- C. Framing Members, General: Fabricate components that, when assembled, have the following characteristics:
 - 1. Profiles that are sharp, straight, and free of defects or deformations.
 - 2. Accurately fitted joints with ends coped or mitered.
 - 3. Means to drain water passing joints, condensation within framing members, and moisture migrating within the system to exterior.
 - 4. Physical and thermal isolation of glazing from framing members.
 - 5. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
 - 6. Provisions for field replacement of glazing from interior for vision glass and exterior for spandrel glazing or metal panels.
 - 7. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.
- D. Mechanically Glazed Framing Members: Fabricate for flush glazing without projecting stops.
- E. Entrance Door Frames: Reinforce as required to support loads imposed by door operation and for installing entrance door hardware.
 - 1. At exterior doors, provide compression weather stripping at fixed stops.
 - 2. At interior doors, provide silencers at stops to prevent metal-to-metal contact. Install three silencers on strike jamb of single-door frames and two silencers on head of frames for pairs of doors.
- F. Entrance Doors: Reinforce doors as required for installing entrance door hardware.
 - 1. At pairs of exterior doors, provide sliding-type weather stripping retained in adjustable strip and mortised into door edge.
 - 2. At exterior doors, provide weather sweeps applied to door bottoms.
- G. Entrance Door Hardware Installation: Factory install entrance door hardware to the greatest extent possible. Cut, drill, and tap for factory-installed entrance door hardware before applying finishes.
- H. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.

2.9 ALUMINUM FINISHES

A. Clear Anodic Finish: AAMA 611, AA-M12C22A31, Class II, 0.010 mm or thicker.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. General:

- 1. Comply with manufacturer's written instructions.
- 2. Do not install damaged components.
- 3. Fit joints to produce hairline joints free of burrs and distortion.
- 4. Rigidly secure nonmovement joints.
- 5. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration.
- 6. Seal joints watertight unless otherwise indicated.

B. Metal Protection:

- 1. Where aluminum will contact dissimilar metals, protect against galvanic action by painting contact surfaces with primer or applying sealant or tape, or by installing nonconductive spacers as recommended by manufacturer for this purpose.
- 2. Where aluminum will contact concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.
- C. Install components to drain water passing joints, condensation occurring within framing members, and moisture migrating within the system to exterior.
- D. Set continuous sill members and flashing in full sealant bed as specified in Section 079200 "Joint Sealants" to produce weathertight installation.
- E. Install components plumb and true in alignment with established lines and grades, and without warp or rack.
- F. Install glazing as specified in Section 088000 "Glazing."
- G. Entrance Doors: Install doors to produce smooth operation and tight fit at contact points.
 - 1. Exterior Doors: Install to produce weathertight enclosure and tight fit at weather stripping.
 - 2. Field-Installed Entrance Door Hardware: Install surface-mounted entrance door hardware according to entrance door hardware manufacturers' written instructions using concealed fasteners to greatest extent possible.
- H. Install perimeter joint sealants as specified in Section 079200 "Joint Sealants" to produce weathertight installation.

3.3 ERECTION TOLERANCES

- A. Install aluminum-framed systems to comply with the following maximum erection tolerances:
 - 1. Location and Plane: Limit variation from true location and plane to 1/8 inch in 12 feet (3 mm in 3.7 m); 1/4 inch (6 mm) over total length.
 - 2. Alignment:
 - a. Where surfaces abut in line, limit offset from true alignment to 1/16 inch (1.5 mm).
 - b. Where surfaces meet at corners, limit offset from true alignment to 1/32 inch (0.8 mm).

B. Diagonal Measurements: Limit difference between diagonal measurements to 1/8 inch (3 mm).

3.4 FIELD QUALITY CONTROL

- A. Repair or remove work if test results and inspections indicate that it does not comply with specified requirements.
- B. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.
- C. Aluminum-framed assemblies will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

3.5 ADJUSTING

- A. Adjust operating entrance door hardware to function smoothly as recommended by manufacturer.
 - 1. For entrance doors accessible to people with disabilities, adjust closers to provide a 3-second closer sweep period for doors to move from a 70-degree open position to 3 inches (75 mm) from the latch, measured to the leading door edge.

END OF SECTION 084113

SECTION 087100 - DOOR HARDWARE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes:

- 1. Mechanical door hardware for the following:
 - a. Swinging doors.
- 2. Cylinders for door hardware specified in other Sections.
- 3. Electrified door hardware.

B. Related Sections:

- Section 081113 "Hollow Metal Doors and Frames" for door silencers provided as part of hollowmetal frames.
- 2. Section 084113 "Aluminum-Framed Entrances and Storefronts" for installation of entrance door hardware, except cylinders.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include construction and installation details, material descriptions, dimensions of individual components and profiles, and finishes.

B. Other Action Submittals:

- 1. Door Hardware Schedule: Prepared by or under the supervision of Installer, detailing fabrication and assembly of door hardware, as well as installation procedures and diagrams. Coordinate final door hardware schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of door hardware.
 - a. Submittal Sequence: Submit door hardware schedule concurrent with submissions of Product Data, Samples, and Shop Drawings. Coordinate submission of door hardware schedule with scheduling requirements of other work to facilitate the fabrication of other work that is critical in Project construction schedule.
 - b. Format: Comply with scheduling sequence and vertical format in DHI's "Sequence and Format for the Hardware Schedule." Double space entries, and number and date each page.
 - Format: Use same scheduling sequence and format and use same door numbers as in the Contract Documents.
 - d. Content: Include the following information:
 - Identification number, location, hand, fire rating, size, and material of each door and frame.

- 2) Locations of each door hardware set, cross-referenced to Drawings on floor plans and to door and frame schedule.
- 3) Complete designations, including name and manufacturer, type, style, function, size, quantity, function, and finish of each door hardware product.
- 4) Description of electrified door hardware sequences of operation and interfaces with other building control systems.
- 5) Fastenings and other pertinent information.
- 6) Explanation of abbreviations, symbols, and codes contained in schedule.
- 7) Mounting locations for door hardware.
- 8) List of related door devices specified in other Sections for each door and frame.
- 2. Keying Schedule: Prepared by or under the supervision of Installer, detailing Owner's final keying instructions for locks. Include schematic keying diagram and index each key set to unique door designations that are coordinated with the Contract Documents.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer
- B. Product Certificates: For electrified door hardware, from the manufacturer.
 - 1. Certify that door hardware approved for use on types and sizes of labeled fire-rated doors complies with listed fire-rated door assemblies.
- C. Product Test Reports: For compliance with accessibility requirements, based on evaluation of comprehensive tests performed by manufacturer and witnessed by a qualified testing agency, for door hardware on doors located in accessible routes.
- D. Warranty: Special warranty specified in this Section.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For each type of door hardware to include in maintenance manuals. Include final hardware and keying schedule.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Supplier of products and an employer of workers trained and approved by product manufacturers and an Architectural Hardware Consultant who is available during the course of the Work to consult with Contractor, Architect, and Owner about door hardware and keying.
 - 1. Warehousing Facilities: In Project's vicinity.
 - 2. Scheduling Responsibility: Preparation of door hardware and keying schedules.
 - 3. Engineering Responsibility: Preparation of data for electrified door hardware, including Shop Drawings, based on testing and engineering analysis of manufacturer's standard units in assemblies similar to those indicated for this Project.
- B. Source Limitations: Obtain each type of door hardware from a single manufacturer.
 - 1. Provide electrified door hardware from same manufacturer as mechanical door hardware, unless otherwise indicated. Manufacturers that perform electrical modifications and that are listed by a testing and inspecting agency acceptable to authorities having jurisdiction are acceptable.

- C. Fire-Rated Door Assemblies: Where fire-rated door assemblies are indicated, provide door hardware rated for use in assemblies complying with NFPA 80 that are listed and labeled by a qualified testing agency, for fire-protection ratings indicated, based on testing at positive pressure according to NFPA 252 or UL 10C, unless otherwise indicated.
- D. Smoke- and Draft-Control Door Assemblies: Where smoke- and draft-control door assemblies are required, provide door hardware that meet requirements of assemblies tested according to UL 1784 and installed in compliance with NFPA 105.
 - 1. Air Leakage Rate: Maximum air leakage of 0.3 cfm/sq. ft. (3 cu. m per minute/sq. m) at the tested pressure differential of 0.3-inch wg (75 Pa) of water.
- E. Electrified Door Hardware: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction.
- F. Means of Egress Doors: Latches do not require more than 15 lbf (67 N) to release the latch. Locks do not require use of a key, tool, or special knowledge for operation.
- G. Accessibility Requirements: For door hardware on doors in an accessible route, comply with the U.S. Architectural & Transportation Barriers Compliance Board's ADA-ABA Accessibility Guidelines and ICC/ANSI A117.1
 - 1. Provide operating devices that do not require tight grasping, pinching, or twisting of the wrist and that operate with a force of not more than 5 lbf (22.2 N).
 - 2. Comply with the following maximum opening-force requirements:
 - a. Interior, Non-Fire-Rated Hinged Doors: 5 lbf (22.2 N) applied perpendicular to door.
 - b. Fire Doors: Minimum opening force allowable by authorities having jurisdiction.
 - 3. Bevel raised thresholds with a slope of not more than 1:2. Provide thresholds not more than.
 - 4. Adjust door closer sweep periods so that, from an open position of 70 degrees, the door will take at least 3 seconds to move to a point 3 inches (75 mm) from the latch, measured to the leading edge of the door.
- H. Keying Conference: Conduct conference at Project site to comply with requirements in Section 013100 "Project Management and Coordination." Incorporate keying conference decisions into final keying schedule after reviewing door hardware keying system including, but not limited to, the following:
 - 1. Function of building, flow of traffic, purpose of each area, degree of security required, and plans for future expansion.
 - 2. Address for delivery of keys.
- I. Preinstallation Conference: Conduct conference at Project site.
 - 1. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 - 2. Inspect and discuss preparatory work performed by other trades.
 - 3. Inspect and discuss electrical roughing-in for electrified door hardware.
 - 4. Review sequence of operation for each type of electrified door hardware.
 - 5. Review required testing, inspecting, and certifying procedures.

1.7 DELIVERY, STORAGE, AND HANDLING

- Inventory door hardware on receipt and provide secure lock-up for door hardware delivered to Project site.
- B. Tag each item or package separately with identification coordinated with the final door hardware schedule, and include installation instructions, templates, and necessary fasteners with each item or package.
- C. Deliver keys to manufacturer of key control system for subsequent delivery to Owner.
- D. Deliver keys and permanent cores to Owner by registered mail or overnight package service.

1.8 COORDINATION

- A. Coordinate layout and installation of floor-recessed door hardware with floor construction. Cast anchoring inserts into concrete.
- B. Installation Templates: Distribute for doors, frames, and other work specified to be factory prepared. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing door hardware to comply with indicated requirements.
- Security: Coordinate installation of door hardware, keying, and access control with Owner's security consultant.
- D. Electrical System Roughing-In: Coordinate layout and installation of electrified door hardware with connections to power supplies and building safety and security systems.
- E. Existing Openings: Where hardware components are scheduled for application to existing construction or where modifications to existing door hardware are required, field verify existing conditions and coordinate installation of door hardware to suit opening conditions and to provide proper door operation.

1.9 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of door hardware that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including excessive deflection, cracking, or breakage.
 - b. Faulty operation of doors and door hardware.
 - Deterioration of metals, metal finishes, and other materials beyond normal weathering and use.
 - 2. Warranty Period: Three years from date of Substantial Completion, unless otherwise indicated.
 - a. Electromagnetic Locks: Five years from date of Substantial Completion.
 - b. Exit Devices: Two years from date of Substantial Completion.
 - c. Manual Closers: 10 years from date of Substantial Completion.

1.10 MAINTENANCE SERVICE

A. Maintenance Tools and Instructions: Furnish a complete set of specialized tools and maintenance instructions for Owner's continued adjustment, maintenance, and removal and replacement of door hardware.

PART 2 - PRODUCTS

2.1 SCHEDULED DOOR HARDWARE

- A. Provide door hardware for each door as scheduled in Part 3 "Door Hardware Schedule" Article to comply with requirements in this Section.
 - 1. Door Hardware Sets: Provide quantity, item, size, finish or color indicated, and named manufacturers' products.
 - 2. Sequence of Operation: Provide electrified door hardware function, sequence of operation, and interface with other building control systems indicated.
- B. Designations: Requirements for design, grade, function, finish, size, and other distinctive qualities of each type of door hardware are indicated in Part 3 "Door Hardware Schedule" Article. Products are identified by using door hardware designations, as follows:
 - 1. Named Manufacturers' Products: Manufacturer and product designation are listed for each door hardware type required for the purpose of establishing minimum requirements. Manufacturers' names are abbreviated in Part 3 "Door Hardware Schedule" Article.
 - 2. References to BHMA Designations: Provide products complying with these designations and requirements for description, quality, and function.

2.2 KEYING

- A. Keying System: Factory registered, complying with guidelines in BHMA A156.28, Appendix A. Incorporate decisions made in keying conference.
 - 1. No Master Key System: Only change keys operate cylinder.
 - 2. Master Key System: Change keys and a master key operate cylinders.
 - 3. Grand Master Key System: Change keys, a master key, and a grand master key operate cylinders.
 - 4. Great-Grand Master Key System: Change keys, a master key, a grand master key, and a great-grand master key operate cylinders.
 - 5. Existing System:
 - a. Master key or grand master key locks to Owner's existing system.
 - b. Re-key Owner's existing master key system into new keying system.
 - 6. Keyed Alike: Key all cylinders to same change key.
- B. Keys: Nickel silver.
 - 1. Stamping: Permanently inscribe each key with a visual key control number and include the following notation:
 - a. Notation: Information to be furnished by Owner.

- 2. Quantity: In addition to one extra key blank for each lock, provide the following:
 - a. Cylinder Change Keys: Three.
 - b. Master Keys: Five.
 - c. Grand Master Keys: Five.
 - d. Great-Grand Master Keys: Five.

2.3 FABRICATION

- A. Manufacturer's Nameplate: Do not provide products that have manufacturer's name or trade name displayed in a visible location except in conjunction with required fire-rated labels and as otherwise approved by Architect.
 - 1. Manufacturer's identification is permitted on rim of lock cylinders only.
- B. Base Metals: Produce door hardware units of base metal indicated, fabricated by forming method indicated, using manufacturer's standard metal alloy, composition, temper, and hardness. Furnish metals of a quality equal to or greater than that of specified door hardware units and BHMA A156.18.
- C. Fasteners: Provide door hardware manufactured to comply with published templates prepared for machine, wood, and sheet metal screws. Provide screws that comply with commercially recognized industry standards for application intended, except aluminum fasteners are not permitted. Provide Phillips flat-head screws with finished heads to match surface of door hardware, unless otherwise indicated.
 - Concealed Fasteners: For door hardware units that are exposed when door is closed, except for
 units already specified with concealed fasteners. Do not use through bolts for installation where
 bolt head or nut on opposite face is exposed unless it is the only means of securely attaching the
 door hardware. Where through bolts are used on hollow door and frame construction, provide
 sleeves for each through bolt.
 - 2. Fire-Rated Applications:
 - a. Wood or Machine Screws: For the following:
 - 1) Hinges mortised to doors or frames; use threaded-to-the-head wood screws for wood doors and frames.
 - 2) Strike plates to frames.
 - 3) Closers to doors and frames.
 - b. Steel Through Bolts: For the following unless door blocking is provided:
 - 1) Surface hinges to doors.
 - 2) Closers to doors and frames.
 - 3) Surface-mounted exit devices.
 - 3. Spacers or Sex Bolts: For through bolting of hollow-metal doors.
 - 4. Fasteners for Wood Doors: Comply with requirements in DHI WDHS.2, "Recommended Fasteners for Wood Doors."
 - 5. Gasketing Fasteners: Provide noncorrosive fasteners for exterior applications and elsewhere as indicated.

2.4 FINISHES

- A. Provide finishes complying with BHMA A156.18 as indicated in door hardware schedule.
- B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- C. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in the same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine doors and frames, with Installer present, for compliance with requirements for installation tolerances, labeled fire-rated door assembly construction, wall and floor construction, and other conditions affecting performance.
- B. Examine roughing-in for electrical power systems to verify actual locations of wiring connections before electrified door hardware installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Steel Doors and Frames: For surface applied door hardware, drill and tap doors and frames according to ANSI/SDI A250.6.
- B. Wood Doors: Comply with DHI WDHS.5 "Recommended Hardware Reinforcement Locations for Mineral Core Wood Flush Doors."

3.3 INSTALLATION

- A. Mounting Heights: Mount door hardware units at heights to comply with the following standards, except as specified below, and as otherwise indicated or required to comply with governing regulations.
 - 1. Standard Steel Doors and Frames: ANSI/SDI A250.8.
 - 2. Custom Steel Doors and Frames: HMMA 831.
 - 3. Wood Doors: DHI WDHS.3, "Recommended Locations for Architectural Hardware for Wood Flush Doors."
 - 4. Locks 36 inches to centerline of lever above finish floor.
 - 5. Exit Devices 40 inches to centerline of pushpad above finish floor.
 - 6. Push/Pull Bars 40 inches to centerline of push bar above finish floor.
 - 7. Pull Bars/Plates 40 inches to centerline of pull bar/plate.
 - 8. Push Plates 40 inches to centerline of push plate.
- B. Install each door hardware item to comply with manufacturer's written instructions. Where cutting and fitting are required to install door hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage, and reinstallation of surface protective trim units with

finishing. Do not install surface-mounted items until finishes have been completed on substrates involved.

- 1. Set units level, plumb, and true to line and location. Adjust and reinforce attachment substrates as necessary for proper installation and operation.
- 2. Drill and countersink units that are not factory prepared for anchorage fasteners. Space fasteners and anchors according to industry standards.
- C. Hinges: Install types and in quantities indicated in door hardware schedule but not fewer than the number recommended by manufacturer for application indicated or one hinge for every 30 inches (750 mm) of door height, whichever is more stringent, unless other equivalent means of support for door, such as spring hinges or pivots, are provided.
- D. Lock Cylinders: Install construction cores to secure building and areas during construction period.
 - 1. Replace construction cores with permanent cores as directed by Owner.
 - 2. Furnish permanent cores to Owner for installation.
- E. Stops: Provide floor stops for doors unless wall or other type stops are indicated in door hardware schedule. Do not mount floor stops where they will impede traffic.
- F. Perimeter Gasketing: Apply to head and jamb, forming seal between door and frame.
- G. Meeting Stile Gasketing: Fasten to meeting stiles, forming seal when doors are closed.
- H. Door Bottoms: Apply to bottom of door, forming seal with threshold when door is closed.

3.4 ADJUSTING

- A. Initial Adjustment: Adjust and check each operating item of door hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.
 - 1. Spring Hinges: Adjust to achieve positive latching when door is allowed to close freely from an open position of 30 degrees.
 - 2. Electric Strikes: Adjust horizontal and vertical alignment of keeper to properly engage lock bolt.
 - 3. Door Closers: Adjust sweep period to comply with accessibility requirements and requirements of authorities having jurisdiction.

3.5 CLEANING AND PROTECTION

- A. Clean adjacent surfaces soiled by door hardware installation.
- B. Clean operating items as necessary to restore proper function and finish.
- C. Provide final protection and maintain conditions that ensure that door hardware is without damage or deterioration at time of Substantial Completion.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain door hardware and door hardware finishes.

3.7 DOOR HARDWARE SCHEDULE

LIST OF MANUFACTURERS

	SPECIFIED	APPROVED	
HINGES	STANLEY	HAGER, MCKINNEY	
LOCKS	CORBIN RUSSWIN	NO SUB.	
EXIT DEVICES	PRECISION VON DUPRIN	CORBIN RUSSWIN	
CLOSERS	NORTON LCN 4040 EDA	STANLEY D-4550	
FLAT GOODS & STOPS	ROCKWOOD KICK PLATES WALL STOP	TRIMCO 8" x 2" L.D.W. x.050 #403	US32D US26D
WEATHERPROOFING*	РЕМКО	REESE	
WALL MAGNETS	RIXSON		

^{*}PROVIDE S88D PERIMETER GASKET AT FIRE RATED DOORS. PROVIDE APPROPRIATE MEETING STILE STRIP AT PAIRS

HARDWARE SET NO. 1 (DOOR NO'S G01A AND G01B)

2 Each Cylinders As Required

NOTE: BALANCE BY DOOR SUPPLIES.

HARDWARE SET NO. 2 (DOOR NO. G02)

1 1	∕₂ Pairs	Hinges	FBB179	4 ½ x 4 ½		US26D
1	Each	Lockset	CL3357	NZD		626
1	Each	Closers	CLP7500		689	
1	Each	Kickplate				

HARDWARE SET NO. 3 (DOOR NO. 101B)

1 1	∕2 Pairs	Hinges	FBB179	$4 \frac{1}{2} \times 4 \frac{1}{2}$	US26D
1	Each	Lockset	CL3355	NZD	626
1	Each	Wall Stop			

HARDWARE SET NO. 4 (DOOR NO'S 101A, 201 AND 103B)

1 1	∕2 Pairs	Hinges	FBB179	$4 \frac{1}{2} \times 4 \frac{1}{2}$		US26D
1	Each	Lockset	CL3355	NZD		626
1	Each	Closers	CLP7500		689	
1	Each	Kickplate				

HARDWARE SET NO. 5 (DOOR NO. 103A)

1 1	∕2 Pairs	Hinges	FBB179	$4 \frac{1}{2} \times 4 \frac{1}{2}$	US26D
1	Each	Lockset	CL3355	NZD	626
1	Each	Closers	7500		689
1	Each	Kickplate			
1	Each	Wall Stop			

HARDWARRE SET NO. 6 (DOOR NO'S 104 AND 203)

1 1	∕2 Pairs	Hinges	FBB179	$4 \frac{1}{2} \times 4 \frac{1}{2}$	US261	D
1	Each	Passage	CL3310	NZD	626	
1	Each	Closers	7500		689	
1	Each	Kickplate				
1	Each	Wall Magnet	#996		689	

END OF SECTION 087100

SECTION 08 8000 - GLAZING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes glazing for the following products and applications, including those specified in other Sections where glazing requirements are specified by reference to this Section:
 - 1. Windows.
 - 2. Doors.
 - 3. Storefront framing.
 - 4. Glazed entrances.
 - 5. Interior borrowed lites.

1.3 DEFINITIONS

- A. Glass Manufacturers: Firms that produce primary glass, fabricated glass, or both, as defined in referenced glazing publications.
- B. Glass Thicknesses: Indicated by thickness designations in millimeters according to ASTM C 1036.
- C. Interspace: Space between lites of an insulating-glass unit.

1.4 PERFORMANCE REQUIREMENTS

- A. General: Installed glazing systems shall withstand normal thermal movement and wind and impact loads (where applicable) without failure, including loss or glass breakage attributable to the following: defective manufacture, fabrication, or installation; failure of sealants or gaskets to remain watertight and airtight; deterioration of glazing materials; or other defects in construction.
- B. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes acting on glass framing members and glazing components.
 - 1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

1.5 PRECONSTRUCTION TESTING

- A. Preconstruction Adhesion and Compatibility Testing: Test each glazing material type, tape sealant, gasket, glazing accessory, and glass-framing member for adhesion to and compatibility with elastomeric glazing sealants.
 - 1. Testing will not be required if data are submitted based on previous testing of current sealant products and glazing materials matching those submitted.
 - 2. Use ASTM C 1087 to determine whether priming and other specific joint-preparation techniques are required to obtain rapid, optimum adhesion of glazing sealants to glass, tape sealants, gaskets, and glazing channel substrates.
 - 3. Test no fewer than two Samples of each type of material, including joint substrates, shims, sealant backings, secondary seals, and miscellaneous materials.
 - 4. Schedule sufficient time for testing and analyzing results to prevent delaying the Work.
 - 5. For materials failing tests, submit sealant manufacturer's written instructions for corrective measures including the use of specially formulated primers.

1.6 SUBMITTALS

- A. Product Data: For each glass product and glazing material indicated.
- B. Glass Samples: For each type of the following products; 12 inches (300 mm) square.
 - 1. Fire-resistive glazing products.
 - 2. Insulating glass.
- C. Glazing Schedule: List glass types and thicknesses for each size opening and location. Use same designations indicated on Drawings.
- D. Qualification Data: For installers.
- E. Product Certificates: For glass and glazing products, from manufacturer.
- F. Preconstruction adhesion and compatibility test report.
- G. Warranties: Sample of special warranties.

1.7 QUALITY ASSURANCE

- A. Manufacturer Qualifications for Insulating-Glass Units with Sputter-Coated, Low-E Coatings: A qualified insulating-glass manufacturer who is approved and certified by coated-glass manufacturer.
- B. Installer Qualifications: A qualified installer who employs glass installers for this Project who are certified under the National Glass Association's Certified Glass Installer Program.
- C. Glass Testing Agency Qualifications: A qualified independent testing agency accredited according to the NFRC CAP 1 Certification Agency Program.
- D. Sealant Testing Agency Qualifications: An independent testing agency qualified according to ASTM C 1021 to conduct the testing indicated.
- E. Source Limitations for Glass: Obtain insulating glass from single source from single manufacturer for each glass type.
- F. Source Limitations for Glazing Accessories: Obtain from single source from single manufacturer for each product and installation method.
- G. Glazing Publications: Comply with published recommendations of glass product manufacturers and organizations below, unless more stringent requirements are indicated. Refer to these publications for glazing terms not otherwise defined in this Section or in referenced standards.
 - 1. GANA Publications: GANA's "Laminated Glazing Reference Manual" and GANA's "Glazing Manual."
 - 2. AAMA Publications: AAMA GDSG-1, "Glass Design for Sloped Glazing," and AAMA TIR-A7, "Sloped Glazing Guidelines."
 - 3. IGMA Publication for Sloped Glazing: IGMA TB-3001, "Guidelines for Sloped Glazing."
 - 4. IGMA Publication for Insulating Glass: SIGMA TM-3000, "North American Glazing Guidelines for Sealed Insulating Glass Units for Commercial and Residential Use."
- H. Safety Glazing Labeling: Where safety glazing labeling is indicated, permanently mark glazing with certification label of the SGCC or another certification agency acceptable to authorities having jurisdiction or the manufacturer. Label shall indicate manufacturer's name, type of glass, thickness, and safety glazing standard with which glass complies.

- I. Fire-Protection-Rated Glazing Labeling: Permanently mark fire-protection-rated glazing with certification label of a testing agency acceptable to authorities having jurisdiction. Label shall indicate manufacturer's name, test standard, whether glazing is for use in fire doors or other openings, whether or not glazing passes hose-stream test, whether or not glazing has a temperature rise rating of 450 deg F (250 deg C), and the fire-resistance rating in minutes.
- J. Preinstallation Conference: Conduct conference at Project site.
 - 1. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 - 2. Review temporary protection requirements for glazing during and after installation.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Protect glazing materials according to manufacturer's written instructions. Prevent damage to glass and glazing materials from condensation, temperature changes, direct exposure to sun, or other causes.
- B. Comply with insulating-glass manufacturer's written recommendations for venting and sealing units to avoid hermetic seal ruptures due to altitude change.

1.9 PROJECT CONDITIONS

- A. Environmental Limitations: Do not proceed with glazing when ambient and substrate temperature conditions are outside limits permitted by glazing material manufacturers and when glazing channel substrates are wet from rain, frost, condensation, or other causes.
 - 1. Do not install glazing sealants when ambient and substrate temperature conditions are outside limits permitted by sealant manufacturer or below 40 deg F (4.4 deg C).

1.10 WARRANTY

- A. Manufacturer's Special Warranty for Coated-Glass Products: Manufacturer's standard form in which coated-glass manufacturer agrees to replace coated-glass units that deteriorate within specified warranty period. Deterioration of coated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning coated glass contrary to manufacturer's written instructions. Defects include peeling, cracking, and other indications of deterioration in coating.
 - 1. Warranty Period: 10 years from date of Substantial Completion.
- B. Manufacturer's Special Warranty on Insulating Glass: Manufacturer's standard form in which insulating-glass manufacturer agrees to replace insulating-glass units that deteriorate within specified warranty period. Deterioration of insulating glass is defined as failure of hermetic seal under normal use that is not attributed to glass breakage or to maintaining and cleaning insulating glass contrary to manufacturer's written instructions. Evidence of failure is the obstruction of vision by dust, moisture, or film on interior surfaces of glass.
 - 1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GLASS PRODUCTS, GENERAL

- A. Thickness: Where glass thickness is indicated, it is a minimum. Provide glass lites in thicknesses as needed to comply with requirements indicated.
 - 1. Minimum Glass Thickness for Exterior Lites: Not less than 6.0 mm.
- B. Strength: Where float glass is indicated, provide annealed float glass, Kind HS heat-treated float glass, or Kind FT heat-treated float glass. Where heat-strengthened glass is indicated, provide Kind HS heat-

treated float glass or Kind FT heat-treated float glass. Where fully tempered glass is indicated, provide Kind FT heat-treated float glass.

- C. Thermal and Optical Performance Properties: Provide glass with performance properties specified, as indicated in manufacturer's published test data, based on procedures indicated below:
 - 1. For monolithic-glass lites, properties are based on units with lites 6.0 mm thick.
 - 2. For insulating-glass units, properties are based on units of thickness indicated for overall unit and for each lite.
 - 3. U-Factors: Center-of-glazing values, according to NFRC 100 and based on LBL's WINDOW 5.2 computer program, expressed as Btu/sq. ft. x h x deg F (W/sq. m x K).
 - 4. Solar Heat-Gain Coefficient and Visible Transmittance: Center-of-glazing values, according to NFRC 200 and based on LBL's WINDOW 5.2 computer program.
 - 5. Visible Reflectance: Center-of-glazing values, according to NFRC 300.

2.2 GLASS PRODUCTS

- A. Float Glass: ASTM C 1036, Type I, Quality-Q3, Class I (clear) unless otherwise indicated.
- B. Heat-Treated Float Glass: ASTM C 1048; Type I; Quality-Q3; Class I (clear) unless otherwise indicated; of kind and condition indicated.
 - 1. Fabrication Process: By horizontal (roller-hearth) process with roll-wave distortion parallel to bottom edge of glass as installed unless otherwise indicated.
 - 2. For uncoated glass, comply with requirements for Condition A.
 - 3. For coated vision glass, comply with requirements for Condition C (other coated glass).
 - 4. Distortion Limits:
 - a. Maximum roller wave: .003 inch peak to valley in center of glass.
 - b. Maximum allowable: .008 inch within 10-1/2 inches of the leading and/or trailing edge of glass.

2.3 INSULATING GLASS

- A. Insulating-Glass Units: Factory-assembled units consisting of sealed lites of glass separated by a dehydrated interspace, qualified according to ASTM E 2190, and complying with other requirements specified.
 - 1. Sealing System: Dual seal, with manufacturer's standard primary and secondary.
 - 2. Spacer: Manufacturer's standard spacer material and construction.
 - 3. Desiccant: Molecular sieve or silica gel, or blend of both.
- B. Glass: Comply with applicable requirements in "Glass Products" Article as indicated by designations in "Insulating-Glass Types" Article.

2.4 FIRE-PROTECTION-RATED GLAZING

- A. Fire-Protection-Rated Glazing, General: Listed and labeled by a testing agency acceptable to authorities having jurisdiction, for fire-protection ratings indicated, based on testing according to NFPA 252 for door assemblies and NFPA 257 for window assemblies.
- B. Monolithic Ceramic Glazing: Clear, ceramic flat glass; 3/16-inch (5-mm) nominal thickness, 60-minute fire-rated, impact-rated (meeting ANSI Z97.1) and passing the hose-stream test.
 - 1. Basis of Design Product: Nippon Electric Glass Co., Ltd. (distributed by Technical Glass Products); FireLite Plus.
 - 2. Acceptable manufacturers include:
 - a. Safti First.
 - b. Schott North America, Inc.
 - c. Vetrotech Saint-Gobain.

2.5 GLAZING GASKETS

- A. Dense Compression Gaskets: Molded or extruded gaskets of profile and hardness required to maintain watertight seal, made from one of the following:
 - 1. Neoprene complying with ASTM C 864.
 - 2. EPDM complying with ASTM C 864.
 - 3. Silicone complying with ASTM C 1115.
 - 4. Thermoplastic polyolefin rubber complying with ASTM C 1115.
- B. Soft Compression Gaskets: Extruded or molded, closed-cell, integral-skinned neoprene, EPDM, silicone or thermoplastic polyolefin rubber gaskets complying with ASTM C 509, Type II, black; of profile and hardness required to maintain watertight seal.
 - 1. Application: Use where soft compression gaskets will be compressed by inserting dense compression gaskets on opposite side of glazing or pressure applied by means of pressure-glazing stops on opposite side of glazing.
- C. Lock-Strip Gaskets: Neoprene extrusions in size and shape indicated, fabricated into frames with molded corner units and zipper lock-strips, complying with ASTM C 542, black.

2.6 GLAZING SEALANTS

A. General:

- Compatibility: Provide glazing sealants that are compatible with one another and with other
 materials they will contact, including glass products, seals of insulating-glass units, and glazing
 channel substrates, under conditions of service and application, as demonstrated by sealant
 manufacturer based on testing and field experience.
- 2. Suitability: Comply with sealant and glass manufacturers' written instructions for selecting glazing sealants suitable for applications indicated and for conditions existing at time of installation.
- B. Glazing Sealant: Neutral-curing silicone glazing sealant complying with ASTM C 920, Type S, Grade NS, Class 100/50, Use NT.
 - Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Corning Corporation; 790.
 - b. GE Advanced Materials Silicones; SilPruf LM SCS2700.
 - c. Pecora Corporation: 890.
 - d. Tremco Incorporated; Spectrem 1.
- C. Glazing Sealants for Fire-Rated Glazing Products: Products that are approved by testing agencies that listed and labeled fire-resistant glazing products with which they are used for applications and fireprotection ratings indicated.

2.7 GLAZING TAPES

- A. Back-Bedding Mastic Glazing Tapes: Preformed, butyl-based, 100 percent solids elastomeric tape; nonstaining and nonmigrating in contact with nonporous surfaces; with or without spacer rod as recommended in writing by tape and glass manufacturers for application indicated; and complying with ASTM C 1281 and AAMA 800 for products indicated below:
 - 1. AAMA 804.3 tape, where indicated.
 - 2. AAMA 806.3 tape, for glazing applications in which tape is subject to continuous pressure.
 - 3. AAMA 807.3 tape, for glazing applications in which tape is not subject to continuous pressure.
- B. Expanded Cellular Glazing Tapes: Closed-cell, PVC foam tapes; factory coated with adhesive on both surfaces; and complying with AAMA 800 for the following types:
 - 1. AAMA 810.1, Type 1, for glazing applications in which tape acts as the primary sealant.

2. AAMA 810.1, Type 2, for glazing applications in which tape is used in combination with a full bead of liquid sealant.

2.8 INSULATED METAL SPANDREL PANELS

A. Panels - Laminated

- 1. Laminated metal faced Mapes-R panels as manufactured by Mapes Industries, Inc.
- 2. Acceptable alternatives: Panels having similar composite construction and finish providing manufacturer has a minimum of 25 years panel laminating experience and comparable published warranties.

B. Finish

- 1. Finishes
- 2. Exterior: Bronze Anodized Class 1
- 3. Interior: Smooth Mill Aluminum
- 4. Color as selected by architect.

C. Panel Fabrication

- 1. Exterior Substrate: Tempered Hardboard
- 2. Core: Polystyrene
- 3. Interior Substrate: Tempered Hardboard
- 4. Tolerances .8% of panels dimension length and width (+/-) 1/16" thickness
- 5. Panel Thickness 1"
- 6. R-Value 4.68
- 7. U-Value 0.21

D. Accessories

- 1. Recommended for use as an infill panel component in window and curtain wall systems. Related material to complete installation as recommended by the manufacturer.
- 2. Seals against moisture intrusion as recommended by the manufacturer. Polyurethane and silicone based sealant with a 20 year life are recommended.

2.9 MISCELLANEOUS GLAZING MATERIALS

- A. General: Provide products of material, size, and shape complying with referenced glazing standard, requirements of manufacturers of glass and other glazing materials for application indicated, and with a proven record of compatibility with surfaces contacted in installation.
- B. Cleaners, Primers, and Sealers: Types recommended by sealant or gasket manufacturer.
- C. Setting Blocks: Elastomeric material with a Shore, Type A durometer hardness of 85, plus or minus 5.
- D. Spacers: Elastomeric blocks or continuous extrusions of hardness required by glass manufacturer to maintain glass lites in place for installation indicated.
- E. Edge Blocks: Elastomeric material of hardness needed to limit glass lateral movement (side walking).
- F. Cylindrical Glazing Sealant Backing: ASTM C 1330, Type O (open-cell material), of size and density to control glazing sealant depth and otherwise produce optimum glazing sealant performance.
- G. Perimeter Insulation for Fire-Resistive Glazing: Product that is approved by testing agency that listed and labeled fire-resistant glazing product with which it is used for application and fire-protection rating indicated.

2.10 FABRICATION OF GLAZING UNITS

- A. Fabricate glazing units in sizes required to fit openings indicated for Project, with edge and face clearances, edge and surface conditions, and bite complying with written instructions of product manufacturer and referenced glazing publications, to comply with system performance requirements.
- B. Clean-cut or flat-grind vertical edges of butt-glazed monolithic lites to produce square edges with slight chamfers at junctions of edges and faces.
- C. Grind smooth and polish exposed glass edges and corners.

2.11 GLASS TYPES SCHEDULE

- A. Glass Type GL-1: Clear fully tempered float glass.
 - 1. Thickness: 6.0 mm.
 - 2. Provide safety glazing labeling.
- B. Glass Type GL-2: Low-e-coated, clear insulating glass, fully tempered where indicated.
 - 1. Overall Unit Thickness: 1 inch (25 mm).
 - 2. Thickness of Each Glass Lite: 6.0 mm.
 - 3. Outdoor Lite: Float/tempered glass.
 - 4. Interspace Content: Air.
 - 5. Indoor Lite: Float/tempered glass.
 - 6. Low-E Coating: Pyrolytic or sputtered on second or third surface.
 - 7. Provide safety glazing labeling.
- C. Glass Type GL-3: 60-minute fire-rated glazing; monolithic ceramic glazing.
 - 1. Provide safety glazing labeling.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine framing, glazing channels, and stops, with Installer present, for compliance with the following:
 - 1. Manufacturing and installation tolerances, including those for size, squareness, and offsets at corners.
 - 2. Presence and functioning of weep systems.
 - 3. Minimum required face and edge clearances.
 - 4. Effective sealing between joints of glass-framing members.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Clean glazing channels and other framing members receiving glass immediately before glazing. Remove coatings not firmly bonded to substrates.
- B. Examine glazing units to locate exterior and interior surfaces. Label or mark units as needed so that exterior and interior surfaces are readily identifiable. Do not use materials that will leave visible marks in the completed work.

3.3 GLAZING, GENERAL

- A. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials, unless more stringent requirements are indicated, including those in referenced glazing publications.
- B. Adjust glazing channel dimensions as required by Project conditions during installation to provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances.
- C. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass is glass with edge damage or other imperfections that, when installed, could weaken glass and impair performance and appearance.
- D. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction testing.
- E. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications, unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.
- F. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.
- G. Provide spacers for glass lites where length plus width is larger than 50 inches (1270 mm).
 - 1. Locate spacers directly opposite each other on both inside and outside faces of glass. Install correct size and spacing to preserve required face clearances, unless gaskets and glazing tapes are used that have demonstrated ability to maintain required face clearances and to comply with system performance requirements.
 - 2. Provide 1/8-inch (3-mm) minimum bite of spacers on glass and use thickness equal to sealant width. With glazing tape, use thickness slightly less than final compressed thickness of tape.
- H. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and according to requirements in referenced glazing publications.
- I. Set glass lites in each series with uniform pattern, draw, bow, and similar characteristics.
- J. Set glass lites with proper orientation so that coatings face exterior or interior as specified.
- K. Where wedge-shaped gaskets are driven into one side of channel to pressurize sealant or gasket on opposite side, provide adequate anchorage so gasket cannot walk out when installation is subjected to movement.
- L. Square cut wedge-shaped gaskets at corners and install gaskets in a manner recommended by gasket manufacturer to prevent corners from pulling away; seal corner joints and butt joints with sealant recommended by gasket manufacturer.

3.4 TAPE GLAZING

- A. Position tapes on fixed stops so that, when compressed by glass, their exposed edges are flush with or protrude slightly above sightline of stops.
- B. Install tapes continuously, but not necessarily in one continuous length. Do not stretch tapes to make them fit opening.

- C. Cover vertical framing joints by applying tapes to heads and sills first and then to jambs. Cover horizontal framing joints by applying tapes to jambs and then to heads and sills.
- D. Place joints in tapes at corners of opening with adjoining lengths butted together, not lapped. Seal joints in tapes with compatible sealant approved by tape manufacturer.
- E. Do not remove release paper from tape until right before each glazing unit is installed.
- F. Apply heel bead of elastomeric sealant.
- G. Center glass lites in openings on setting blocks and press firmly against tape by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings.
- H. Apply cap bead of elastomeric sealant over exposed edge of tape.

3.5 GASKET GLAZING (DRY)

- A. Cut compression gaskets to lengths recommended by gasket manufacturer to fit openings exactly, with allowance for stretch during installation.
- B. Insert soft compression gasket between glass and frame or fixed stop so it is securely in place with joints miter cut and bonded together at corners.
- C. Installation with Drive-in Wedge Gaskets: Center glass lites in openings on setting blocks and press firmly against soft compression gasket by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.
- D. Installation with Pressure-Glazing Stops: Center glass lites in openings on setting blocks and press firmly against soft compression gasket. Install dense compression gaskets and pressure-glazing stops, applying pressure uniformly to compression gaskets. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.
- E. Install gaskets so they protrude past face of glazing stops.

3.6 SEALANT GLAZING (WET)

- A. Install continuous spacers, or spacers combined with cylindrical sealant backing, between glass lites and glazing stops to maintain glass face clearances and to prevent sealant from extruding into glass channel and blocking weep systems until sealants cure. Secure spacers or spacers and backings in place and in position to control depth of installed sealant relative to edge clearance for optimum sealant performance.
- B. Force sealants into glazing channels to eliminate voids and to ensure complete wetting or bond of sealant to glass and channel surfaces.
- C. Tool exposed surfaces of sealants to provide a substantial wash away from glass.

3.7 LOCK-STRIP GASKET GLAZING

A. Comply with ASTM C 716 and gasket manufacturer's written instructions. Provide supplementary wet seal and weep system unless otherwise indicated.

3.8 INSULATED METAL SPANDREL PANEL INSTALLATION

- A. Install insulated metal spandrel panels in accordance with manufacturer's recommendations.
 - 1. Panel surfaces shall be free from defects prior to installation.
 - 2. Erect panels plumb, level and true.
 - 3. Glaze panels securely and in accordance with approved shop drawings and manufacturers instructions to allow for necessary thermal movement and structural support.
 - 4. Do not install panels that are observed to be defective including warped, bowed, dented, scratched and delaminating components.
 - 5. Weather seal all joints as required using methods and materials as previously specified.
 - 6. Separate dissimilar metals using gasketed fasteners and blocking to eliminate the possibility of electrolytic reaction.

B. Adjusting and Cleaning

- Remove masking film as soon as possible after installation. Masking intentionally left in place after panel installation will be the responsibility of the contractor.
- 2. Weep holes and drainage channels must be unobstructed and free from dirt and sealant.

3.9 CLEANING AND PROTECTION

- A. Protect exterior glass from damage immediately after installation by attaching crossed streamers to framing held away from glass. Do not apply markers to glass surface. Remove nonpermanent labels and clean surfaces.
- B. Protect glass from contact with contaminating substances resulting from construction operations. If, despite such protection, contaminating substances do come into contact with glass, remove substances immediately as recommended in writing by glass manufacturer.
- C. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for buildup of dirt, scum, alkaline deposits, or stains; remove as recommended in writing by glass manufacturer.
- D. Remove and replace glass that is broken, chipped, cracked, or abraded or that is damaged from natural causes, accidents, and vandalism, during construction period.
- E. Wash glass on both exposed surfaces in each area of Project not more than four days before date scheduled for inspections that establish date of Substantial Completion. Wash glass as recommended in writing by glass manufacturer.

END OF SECTION 08 8000

SECTION 092216 - NON-STRUCTURAL METAL FRAMING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Non-load-bearing steel framing systems for interior gypsum board assemblies.
 - 2. Suspension systems for interior gypsum ceilings, soffits, and grid systems.
- B. Related Requirements:
 - 1. Section 054000, "Cold-Formed Metal Framing" for exterior and interior load-bearing and exterior non-load-bearing wall studs; floor joists; roof rafters and ceiling joists; and roof trusses.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Fire-Test-Response Characteristics: For fire-resistance-rated assemblies that incorporate non-load-bearing steel framing, provide materials and construction identical to those tested in assembly indicated, according to ASTM E 119 by an independent testing agency.
- B. STC-Rated Assemblies: For STC-rated assemblies, provide materials and construction identical to those tested in assembly indicated, according to ASTM E 90 and classified according to ASTM E 413 by an independent testing agency.

2.2 FRAMING SYSTEMS

- A. Framing Members, General: Comply with ASTM C 754 for conditions indicated.
 - Steel Sheet Components: Comply with ASTM C 645 requirements for metal unless otherwise indicated.
 - 2. Protective Coating: ASTM A 653/A 653M, G40 (Z120) , hot-dip galvanized unless otherwise indicated.
- B. Studs and Runners: ASTM C 645. Use either steel studs and runners or dimpled steel studs and runners.
 - 1. Steel Studs and Runners:
 - a. Minimum Base-Metal Thickness: As indicated on Drawings.
 - b. Depth: As indicated on Drawings.
 - 2. Dimpled Steel Studs and Runners:
 - a. Minimum Base-Metal Thickness: 0.015 inch (0.38 mm).
 - b. Depth: As indicated on Drawings.

- C. Slip-Type Head Joints: Provide one of the following:
 - 1. Single Long-Leg Runner System: ASTM C 645 top runner with 2-inch- (51-mm-) deep flanges in thickness not less than indicated for studs, installed with studs friction fit into top runner and with continuous bridging with straps or 1-1/2 inch (38 mm) cold- rolled channels located within 12 inches (305 mm) of the top of studs to provide lateral bracing.
 - 2. Double-Runner System: ASTM C 645 top runners, inside runner with 2-inch- (51-mm-) deep flanges in thickness not less than indicated for studs and fastened to studs, and outer runner sized to friction fit inside runner.
 - 3. Deflection Track: Steel sheet top runner manufactured to prevent cracking of finishes applied to interior partition framing resulting from deflection of structure above; in thickness not less than indicated for studs and in width to accommodate depth of studs.
 - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Dietrich Metal Framing; SLP-TRK Slotted Deflection Track.
 - 2) Superior Metal Trim; Superior Flex Track System (SFT).
- D. Firestop Tracks: Top runner manufactured to allow partition heads to expand and contract with movement of the structure while maintaining continuity of fire-resistance-rated assembly indicated; in thickness not less than indicated for studs and in width to accommodate depth of studs.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Fire Trak Corp.; Fire Trak System attached to studs with Fire Trak Posi Klip.
 - b. Grace Construction Products; FlameSafe FlowTrak System.
 - c. Metal-Lite, Inc.; The System.
- E. Flat Strap and Backing Plate: Steel sheet for blocking and bracing in length and width indicated.
 - 1. Minimum Base-Metal Thickness: 0.027 inch (0.68 mm).
- F. Cold-Rolled Channel Bridging: Steel, 0.053-inch (1.34-mm) minimum base-metal thickness, with minimum 1/2-inch- (13-mm-) wide flanges.
 - 1. Depth: 1-1/2 inches (38 mm).
 - 2. Clip Angle: Not less than 1-1/2 by 1-1/2 inches (38 by 38 mm), 0.068-inch- (1.72-mm-) thick, galvanized steel.

2.3 AUXILIARY MATERIALS

- A. General: Provide auxiliary materials that comply with referenced installation standards.
 - 1. Fasteners for Metal Framing: Of type, material, size, corrosion resistance, holding power, and other properties required to fasten steel members to substrates.
- B. Isolation Strip at Exterior Walls: Provide one of the following:
 - 1. Asphalt-Saturated Organic Felt: ASTM D 226, Type I (No. 15 asphalt felt), nonperforated.
 - 2. Foam Gasket: Adhesive-backed, closed-cell vinyl foam strips that allow fastener penetration without foam displacement, 1/8 inch (3.2 mm) thick, in width to suit steel stud size.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and substrates, with Installer present, and including welded hollow-metal frames, cast-in anchors, and structural framing, for compliance with requirements and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Suspended Assemblies: Coordinate installation of suspension systems with installation of overhead structure to ensure that inserts and other provisions for anchorages to building structure have been installed to receive hangers at spacing required to support the Work and that hangers will develop their full strength.
 - 1. Furnish concrete inserts and other devices indicated to other trades for installation in advance of time needed for coordination and construction.

3.3 INSTALLATION, GENERAL

- A. Installation Standard: ASTM C 754.
 - Gypsum Board Assemblies: Also comply with requirements in ASTM C 840 that apply to framing installation.
- B. Install supplementary framing, and blocking to support fixtures, equipment services, heavy trim, grab bars, toilet accessories, furnishings, or similar construction.
- C. Install bracing at terminations in assemblies.
- D. Do not bridge building control and expansion joints with non-load-bearing steel framing members. Frame both sides of joints independently.

3.4 INSTALLING FRAMED ASSEMBLIES

- A. Install framing system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.
 - 1. Single-Layer Application: 16 inches (406 mm) o.c. unless otherwise indicated.
 - 2. Multilayer Application: 16 inches (406 mm) o.c. unless otherwise indicated.
- B. Where studs are installed directly against exterior masonry walls or dissimilar metals at exterior walls, install isolation strip between studs and exterior wall.
- C. Install studs so flanges within framing system point in same direction.
- D. Install tracks (runners) at floors and overhead supports. Extend framing full height to structural supports or substrates above suspended ceilings except where partitions are indicated to terminate at suspended ceilings. Continue framing around ducts penetrating partitions above ceiling.
 - 1. Slip-Type Head Joints: Where framing extends to overhead structural supports, install to produce joints at tops of framing systems that prevent axial loading of finished assemblies.
 - 2. Door Openings: Screw vertical studs at jambs to jamb anchor clips on door frames; install runner track section (for cripple studs) at head and secure to jamb studs.
 - a. Install two studs at each jamb unless otherwise indicated.
 - b. Install cripple studs at head adjacent to each jamb stud, with a minimum 1/2-inch (13-mm) clearance from jamb stud to allow for installation of control joint in finished assembly.
 - c. Extend jamb studs through suspended ceilings and attach to underside of overhead structure.
 - 3. Other Framed Openings: Frame openings other than door openings the same as required for door openings unless otherwise indicated. Install framing below sills of openings to match framing required above door heads.
 - 4. Fire-Resistance-Rated Partitions: Install framing to comply with fire-resistance-rated assembly indicated and support closures and to make partitions continuous from floor to underside of solid structure.
 - a. Firestop Track: Where indicated, install to maintain continuity of fire-resistance-rated assembly indicated.

E.	Installation Tolerance: Install each framing member so fastening surfaces vary not more than 1/8 inch (3 mm) from the plane formed by faces of adjacent framing.							
END OF	END OF SECTION 092216							

SECTION 092900 - GYPSUM BOARD

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Interior gypsum board.
- B. Related Requirements:
 - 1. Section 05 5100 "Cold Formed Metal Framing".
 - 2. Section 06 1600 "Sheathing" for gypsum sheathing for exterior walls.
 - 3. Section 07 8446 "Fire-Resistive Joint Systems".
 - 4. Section 09 2216"Non-Structural Metal Framing" for non-structural framing and suspension systems that support gypsum board panels.
 - 5. Section 09 2117 "Gypsum Board Shaft Wall Assemblies" for metal shaft-wall framing, gypsum shaft liners, and other components of shaft-wall assemblies.
 - 6. Division 09 painting Sections for primers applied to gypsum board surfaces.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For the following products:
 - Trim Accessories: Full-size Sample in 12-inch- (300-mm-) long length for each trim accessory indicated.

1.4 QUALITY ASSURANCE

- A. Mockups: Before beginning gypsum board installation, install mockups of at least 100 sq. ft. (9 sq. m) in surface area to demonstrate aesthetic effects and set quality standards for materials and execution.
 - 1. Install mockups for the following:
 - a. Each level of gypsum board finish indicated for use in exposed locations.
 - b. Each texture finish indicated.
 - 2. Apply or install final decoration indicated, including painting and wallcoverings, on exposed surfaces for review of mockups.
 - 3. Simulate finished lighting conditions for review of mockups.
 - 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.5 DELIVERY, STORAGE AND HANDLING

A. Store materials inside under cover and keep them dry and protected against weather, condensation, direct sunlight, construction traffic, and other potential causes of damage. Stack panels flat and supported on risers on a flat platform to prevent sagging.

1.6 FIELD CONDITIONS

- A. Environmental Limitations: Comply with ASTM C 840 requirements or gypsum board manufacturer's written recommendations, whichever are more stringent.
- B. Do not install paper-faced gypsum panels until installation areas are enclosed and conditioned.
- C. Do not install panels that are wet, those that are moisture damaged, and those that are mold damaged.
 - 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 - 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Resistance-Rated Assemblies: For fire-resistance-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 119 by an independent testing agency.

2.2 GYPSUM BOARD, GENERAL

A. Size: Provide maximum lengths and widths available that will minimize joints in each area and that correspond with support system indicated.

2.3 INTERIOR GYPSUM BOARD

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following
 - 1. American Gypsum.
 - 2. CertainTeed Corp.
 - 3. Georgia-Pacific Gypsum LLC.
 - 4. National Gypsum Company.
 - 5. Temple-Inland.
 - 6. USG Corporation.
- B. Gypsum Wallboard: ASTM C 1396/C 1396M.
 - 1. Thickness: 5/8 inch (15.9 mm).
 - 2. Long Edges: Tapered.
- C. Gypsum Board, Type X: ASTM C 1396/C 1396M.
 - 1. Thickness: 5/8 inch (15.9 mm).
 - 2. Long Edges: Tapered.

2.4 TRIM ACCESSORIES

- A. Interior Trim: ASTM C 1047.
 - 1. Material: Galvanized or aluminum-coated steel sheet.
 - 2. Shapes:
 - a. Cornerbead
 - b. LC-Bead: J-shaped; exposed long flange receives joint compound.
 - c. L-Bead: L-shaped; exposed long flange receives joint compound.
 - d. Expansion (control) joint.

2.5 JOINT TREATMENT MATERIALS

- A. General: Comply with ASTM C 475/C 475M.
- B. Joint Tape:
 - 1. Interior Gypsum Board: Paper.
 - 2. Glass-Mat Gypsum Sheathing Board: 10-by-10 glass mesh.
 - 3. Tile Backing Panels: As recommended by panel manufacturer.
- C. Joint Compound for Interior Gypsum Board: For each coat use formulation that is compatible with other compounds applied on previous or for successive coats.
 - 1. Prefilling: At open joints and damaged surface areas, use setting-type taping compound.
 - 2. Embedding and First Coat: For embedding tape and first coat on joints, fasteners, and trim flanges, use compound.
 - a. Use setting-type compound for installing paper-faced metal trim accessories.
 - 3. Fill Coat: For second coat, use drying-type, all-purpose compound.
 - 4. Finish Coat: For third coat, use drying-type, all-purpose compound.
- D. Joint Compound for Exterior Applications:
 - 1. Glass-Mat Gypsum Sheathing Board: As recommended by sheathing board manufacturer.

2.6 AUXILIARY MATERIALS

- A. General: Provide auxiliary materials that comply with referenced installation standards and manufacturer's written recommendations.
- B. Laminating Adhesive: Adhesive or joint compound recommended for directly adhering gypsum panels to continuous substrate.
- C. Steel Drill Screws: ASTM C 1002, unless otherwise indicated.
 - 1. Use screws complying with ASTM C 954 for fastening panels to steel members from 0.033 to 0.112 inch (0.84 to 2.84 mm) thick.
 - For fastening cementitious backer units, use screws of type and size recommended by panel manufacturer.
- D. Sound Attenuation Blankets: ASTM C 665, Type I (blankets without membrane facing) produced by combining thermosetting resins with mineral fibers manufactured from glass, slag wool, or rock wool.
 - 1. Fire-Resistance-Rated Assemblies: Comply with mineral-fiber requirements of assembly.
- E. Acoustical Joint Sealant: As specified in Section 07 9200 "Joint Sealants".
- F. Thermal Insulation: As specified in Section 07 2100 "Thermal Insulation."
- G. Vapor Retarder: As specified in Section 07 2100 "Thermal Insulation."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and substrates including welded hollow-metal frames and framing, with Installer present, for compliance with requirements and other conditions affecting performance.
- B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLYING AND FINISHING PANELS, GENERAL

- A. Comply with ASTM C 840.
- B. Install panels with face side out. Butt panels together for a light contact at edges and ends with not more than 1/16 inch (1.5 mm) of open space between panels. Do not force into place.
- C. Locate edge and end joints over supports, except in ceiling applications where intermediate supports or gypsum board back-blocking is provided behind end joints. Do not place tapered edges against cut edges or ends. Stagger vertical joints on opposite sides of partitions. Do not make joints other than control joints at corners of framed openings.
- D. Form control and expansion joints with space between edges of adjoining gypsum panels.
- E. Cover both faces of support framing with gypsum panels in concealed spaces (above ceilings, etc., except in chases braced internally.
 - 1. Unless concealed application is indicated or required for sound, fire, air, or smoke ratings, coverage may be accomplished with scraps of not less than 8 sq. ft. (0.7 sq. m) in area.
 - 2. Fit gypsum panels around ducts, pipes, and conduits.
 - 3. Where partitions intersect structural members projecting below underside of floor/roof slabs and decks, cut gypsum panels to fit profile formed by structural members; allow 1/4- to 3/8-inch- (6.4- to 9.5-mm-) wide joints to install sealant.
- F. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments, except floors. Provide 1/4- to 1/2-inch- (6.4- to 12.7-mm-) wide spaces at these locations and trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.
- G. Attachment to Steel Framing: Attach panels so leading edge or end of each panel is attached to open (unsupported) edges of stud flanges first.
- H. STC-Rated Assemblies: Seal construction at perimeters, behind control joints, and at openings and penetrations with a continuous bead of acoustical sealant. Install acoustical sealant at both faces of partitions at perimeters and through penetrations. Comply with ASTM C 919 and with manufacturer's written recommendations for locating edge trim and closing off sound-flanking paths around or through assemblies, including sealing partitions above acoustical ceilings.
- I. Install sound attenuation blankets before installing gypsum panels unless blankets are readily installed after panels have been installed on one side.

3.3 APPLYING INTERIOR GYPSUM BOARD

- A. Single-Layer Application:
 - 1. On ceilings, apply gypsum panels before wall/partition board application to greatest extent possible and at right angles to framing unless otherwise indicated.
 - 2. On partitions/walls, apply gypsum panels vertically (parallel to framing) or horizontally (perpendicular to framing) unless otherwise indicated or required by fire-resistance-rated assembly, and minimize end joints.
 - a. Stagger abutting end joints not less than one framing member in alternate courses of panels.
 - b. At stairwells and other high walls, install panels horizontally unless otherwise indicated or required by fire-resistance-rated assembly.
 - 3. Fastening Methods: Apply gypsum panels to supports with steel drill screws.

- B. Multilayer Application:
 - 1. On partitions/walls, apply gypsum board indicated for base layers and face layers vertically (parallel to framing) with joints of base layers located over stud or furring member and face-layer joints offset at least one stud or furring member with base-layer joints, unless otherwise indicated or required by fire-resistance-rated assembly. Stagger joints on opposite sides of partitions.
 - 2. Fastening Methods: Fasten base layers and face layers separately to supports with screws .
- C. Laminating to Substrate: Where gypsum panels are indicated as directly adhered to a substrate (other than studs, joists, furring members, or base layer of gypsum board), comply with gypsum board manufacturer's written recommendations and temporarily brace or fasten gypsum panels until fastening adhesive has set.

3.4 INSTALLING TRIM ACCESSORIES

- A. General: For trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer's written instructions.
- B. Control Joints: Install control joints according to ASTM C 840 and as indicated on Drawings.
- C. Interior Trim: Install in the following locations:
 - 1. Cornerbead: Use at outside corners unless otherwise indicated.
 - 2. LC-Bead: Use at exposed panel edges.
 - 3. L-Bead: Use where indicated.
- D. Exterior Trim: Install in the following locations:
 - 1. Cornerbead: Use at outside corners.
 - 2. LC-Bead: Use at exposed panel edges.
- E. Aluminum Trim: Install in locations indicated on Drawings.

3.5 FINISHING GYPSUM BOARD

- A. General: Treat gypsum board joints, interior angles, edge trim, control joints, penetrations, fastener heads, surface defects, and elsewhere as required to prepare gypsum board surfaces for decoration. Promptly remove residual joint compound from adjacent surfaces.
- B. Prefill open joints and damaged surface areas.
- C. Apply joint tape over gypsum board joints, except for trim products specifically indicated as not intended to receive tape.
- D. Gypsum Board Finish Levels: Finish panels to levels indicated below and according to ASTM C 840:
 - 1. Level 1: Ceiling plenum areas, concealed areas, and where indicated.
 - 2. Level 2: Panels that are substrate for tile.
 - 3. Level 3: Not used.
 - 4. Level 4: At panel surfaces that will be exposed to view unless otherwise indicated .
 - a. Primer and its application to surfaces are specified in other Division 09 Sections.
 - 5. Level 5: Not used.
- E. Glass-Mat Gypsum Sheathing Board: Finish according to manufacturer's written instructions for use as exposed soffit board.

3.6 PROTECTION

- A. Protect adjacent surfaces from drywall compound and promptly remove from floors and other non-drywall surfaces. Repair surfaces stained, marred, or otherwise damaged during drywall application.
- B. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.
- C. Remove and replace panels that are wet, moisture damaged, and mold damaged.
 - 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 - 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

END OF SECTION 092900

SECTION 095113 - ACOUSTICAL PANEL CEILINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes acoustical panels and exposed suspension systems for ceilings.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For each exposed product and for each color and texture specified, 6 inches (150 mm) in size.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For finishes to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Acoustical Ceiling Panels: Full-size panels equal to 2 percent of quantity installed.
 - 2. Suspension-System Components: Quantity of each exposed component equal to 2 percent of quantity installed.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Deliver acoustical panels, suspension-system components, and accessories to Project site in original, unopened packages and store them in a fully enclosed, conditioned space where they will be protected against damage from moisture, humidity, temperature extremes, direct sunlight, surface contamination, and other causes.
- B. Before installing acoustical panels, permit them to reach room temperature and a stabilized moisture content.
- C. Handle acoustical panels carefully to avoid chipping edges or damaging units in any way.

1.8 FIELD CONDITIONS

A. Environmental Limitations: Do not install acoustical panel ceilings until spaces are enclosed and weatherproof, wet work in spaces is complete and dry, work above ceilings is complete, and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: Comply with ASTM E 1264 for Class B materials, or better.
 - 2. Smoke-Developed Index: 450 or less.

2.2 ACOUSTICAL PANELS, GENERAL

- A. Low-Emitting Materials: Acoustical panel ceilings shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- B. Source Limitations:
 - 1. Acoustical Ceiling Panel: Obtain each type from single source from single manufacturer.
 - 2. Suspension System: Obtain each type from single source from single manufacturer.
- C. Source Limitations: Obtain each type of acoustical ceiling panel and supporting suspension system from single source from single manufacturer.
- D. Acoustical Panel Standard: Provide manufacturer's standard panels of configuration indicated that comply with ASTM E 1264 classifications as designated by types, patterns, acoustical ratings, and light reflectances unless otherwise indicated.
 - 1. Mounting Method for Measuring NRC: Type E-400; plenum mounting in which face of test specimen is 15-3/4 inches (400 mm) away from test surface according to ASTM E 795.
- E. Acoustical Panel Colors and Patterns: Match appearance characteristics indicated for each product type.

2.3 ACOUSTICAL PANELS APC-1

- A. Basis-of-Design Product: Armstrong World Industries, Inc.; Ultima Square Lay-In, Fine Texture, or equal product by one of the following acceptable manufacturers.
 - 1. CertainTeed Corporation.
 - 2. Chicago Metallic Corporation.
 - 3. United States Gypsum Company.
- B. Classification: Provide panels complying with ASTM E 1264 for type, form, and pattern as follows:
 - 1. Type and Form: Type IV, mineral base with membrane-faced overlay; Form 2, water felted; with water repellent membrane.
 - 2. Pattern: E (lightly textured).
- C. Color: White.
- D. LR: Not less than 0.90.
- E. NRC: Not less than 0.70.
- F. CAC: Not less than 35.
- G. Edge/Joint Detail: Square.
- H. Thickness: 3/4 inch (19 mm).

- I. Modular Size: 24 by 24 inches (610 by 610 mm).
- J. Broad Spectrum Antimicrobial Fungicide and Bactericide Treatment: Provide acoustical panels treated with manufacturer's standard antimicrobial formulation that inhibits fungus, mold, mildew, and grampositive and gram-negative bacteria and showing no mold, mildew, or bacterial growth when tested according to ASTM D 3273 and evaluated according to ASTM D 3274 or ASTM G 21.

2.4 METAL SUSPENSION SYSTEMS, GENERAL

- A. Metal Suspension-System Standard: Provide manufacturer's standard direct-hung metal suspension systems of types, structural classifications, and finishes indicated that comply with applicable requirements in ASTM C 635/C 635M.
 - 1. High-Humidity Finish: Comply with ASTM C 635/C 635M requirements for "Coating Classification for Severe Environment Performance" where high-humidity finishes are indicated.
- B. Attachment Devices: Size for five times the design load indicated in ASTM C 635/C 635M, Table 1, "Direct Hung," unless otherwise indicated. Comply with seismic design requirements.
 - 1. Power-Actuated Fasteners in Concrete: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other accessory devices for attaching hangers of type indicated and with capability to sustain, without failure, a load equal to 10 times that imposed by ceiling construction, as determined by testing according to ASTM E 1190, conducted by a qualified testing and inspecting agency.
- C. Wire Hangers, Braces, and Ties: Provide wires complying with the following requirements:
 - 1. Zinc-Coated, Carbon-Steel Wire: ASTM A 641/A 641M, Class 1 zinc coating, soft temper.
 - 2. Size: Select wire diameter so its stress at three times hanger design load (ASTM C 635/C 635M, Table 1, "Direct Hung") will be less than yield stress of wire, but provide not less than 0.106-inch-(2.69-mm-) diameter wire, unless heavier wire is recommended by the manufacturer for the loads specified or indicated on the Drawings.
- D. Angle Hangers: Angles with legs not less than 7/8 inch (22 mm) wide; formed with 0.04-inch- (1-mm-) thick, galvanized-steel sheet complying with ASTM A 653/A 653M, G90 (Z275) coating designation; with bolted connections and 5/16-inch- (8-mm-) diameter bolts.

2.5 METAL SUSPENSION SYSTEM

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Armstrong World Industries, Inc.
 - 2. CertainTeed Corporation.
 - 3. Chicago Metallic Corporation.
 - 4. United States Gypsum Company.
- B. Wide-Face, Capped, Double-Web, Steel Suspension System: Main and cross runners roll formed from cold-rolled steel sheet; prepainted, electrolytically zinc coated, or hot-dip galvanized according to ASTM A 653/A 653M, not less than G30 (Z90) coating designation; with prefinished 15/16-inch- (24-mm-) wide metal caps on flanges.
 - 1. Structural Classification: Intermediate-duty system.
 - 2. End Condition of Cross Runners: Butt-edge type.
 - 3. Face Design: Flat, flush.
 - 4. Cap Material: Steel cold-rolled sheet.
 - 5. Cap Finish: Painted white.

2.6 METAL EDGE MOLDINGS AND TRIM

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Armstrong World Industries, Inc.
 - 2. CertainTeed Corporation.
 - 3. Chicago Metallic Corporation.
 - 4. Fry Reglet Corporation.
 - 5. Gordon, Inc.
 - 6. United States Gypsum Company.
- B. Roll-Formed, Sheet-Metal Edge Moldings and Trim: Type and profile indicated or, if not indicated, manufacturer's standard moldings for edges and penetrations that comply with seismic design requirements; formed from sheet metal of same material, finish, and color as that used for exposed flanges of suspension-system runners.
 - Provide manufacturer's standard edge moldings that fit acoustical panel edge details and suspension systems indicated and that match width and configuration of exposed runners unless otherwise indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, including structural framing to which acoustical panel ceilings attach or abut, with Installer present, for compliance with requirements specified in this and other Sections that affect ceiling installation and anchorage and with requirements for installation tolerances and other conditions affecting performance of acoustical panel ceilings.
- B. Examine acoustical panels before installation. Reject acoustical panels that are wet, moisture damaged, or mold damaged.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Measure each ceiling area and establish layout of acoustical panels to balance border widths at opposite edges of each ceiling. Avoid using less-than-half-width panels at borders, and comply with layout shown on reflected ceiling plans.

3.3 INSTALLATION

- A. Suspend ceiling hangers from building's structural members and as follows:
 - 1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structure or of ceiling suspension system.
 - 2. Splay hangers only where required to miss obstructions; offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
 - 3. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with location of hangers at spacings required to support standard suspension-system members, install supplemental suspension members and hangers in form of trapezes or equivalent devices.
 - 4. Secure wire hangers to ceiling-suspension members and to supports above with a minimum of three tight turns. Connect hangers directly either to structures or to inserts, eye screws, or other devices that are secure and appropriate for substrate and that will not deteriorate or otherwise fail due to age, corrosion, or elevated temperatures.

- 5. Do not support ceilings directly from permanent metal forms or floor deck. Fasten hangers to cast-in-place hanger inserts, postinstalled mechanical or adhesive anchors, or power-actuated fasteners that extend through forms into concrete.
- 6. When steel framing does not permit installation of hanger wires at spacing required, install carrying channels or other supplemental support for attachment of hanger wires.
- 7. Do not attach hangers to steel deck tabs.
- 8. Do not attach hangers to steel roof deck. Attach hangers to structural members.
- 9. Space hangers not more than 48 inches (1200 mm) o.c. along each member supported directly from hangers unless otherwise indicated; provide hangers not more than 8 inches (200 mm) from ends of each member.
- 10. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced standards and publications.
- B. Secure bracing wires to ceiling suspension members and to supports with a minimum of four tight turns. Suspend bracing from building's structural members as required for hangers, without attaching to permanent metal forms, steel deck, or steel deck tabs. Fasten bracing wires into concrete with cast-in-place or postinstalled anchors.
- C. Install edge moldings and trim of type indicated at perimeter of acoustical ceiling area and where necessary to conceal edges of acoustical panels.
 - 1. Screw attach moldings to substrate at intervals not more than 16 inches (400 mm) o.c. and not more than 3 inches (75 mm) from ends, leveling with ceiling suspension system to a tolerance of 1/8 inch in 12 feet (3.2 mm in 3.6 m). Miter corners accurately and connect securely.
 - 2. Do not use exposed fasteners, including pop rivets, on moldings and trim.
- D. Install suspension-system runners so they are square and securely interlocked with one another. Remove and replace dented, bent, or kinked members.
- E. Install acoustical panels with undamaged edges and fit accurately into suspension-system runners and edge moldings. Scribe and cut panels at borders and penetrations to provide a neat, precise fit.
 - 1. Arrange directionally patterned acoustical panels as follows:
 - a. Install panels with pattern running in one direction parallel to short axis of space.
 - 2. For square-edged panels, install panels with edges fully hidden from view by flanges of suspension-system runners and moldings.

3.4 CLEANING

A. Clean exposed surfaces of acoustical panel ceilings, including trim, edge moldings, and suspension-system members. Comply with manufacturer's written instructions for cleaning and touchup of minor finish damage. Remove and replace ceiling components that cannot be successfully cleaned and repaired to permanently eliminate evidence of damage.

END OF SECTION 095113

SECTION 096513 - RESILIENT BASE AND ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - Resilient base.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For each exposed product and for each color and texture specified, not less than 12 inches (300 mm) long.
- C. Product Schedule: For resilient base and accessory products. Use same designations indicated on Drawings.

1.4 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Furnish not less than [10 linear feet (3 linear m)] of each type, color, pattern, and size of resilient product installed.

1.5 QUALITY ASSURANCE

1.6 DELIVERY, STORAGE, AND HANDLING

A. Store resilient products and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F (10 deg C) or more than 90 deg F (32 deg C).

1.7 FIELD CONDITIONS

- A. Maintain ambient temperatures within range recommended by manufacturer, but not less than [70 deg F (21 deg C)] or more than [95 deg F (35 deg C)] in spaces to receive resilient products during the following time periods:
 - 1. 48 hours before installation.
 - 2. During installation.
 - 3. 48 hours after installation.
- B. After installation and until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than [55 deg F (13 deg C)] or more than [95 deg F (35 deg C)].
- C. Install resilient products after other finishing operations, including painting, have been completed.

PART 2 - PRODUCTS

2.1 RESILIENT (VINYL) BASE (RB)

- A. Product Standard: ASTM F 1861, Type TV (vinyl, thermoplastic).
 - 1. Group: I (solid, homogeneous).
 - 2. Style and Location:
 - a. Style B, Cove.
- B. Minimum Thickness: [0.080 inch (2.0 mm)]
- C. Height: 4 inches (102 mm).
- D. Lengths: Coils in manufacturer's standard length.
- E. Outside Corners: Job formed.
- F. Inside Corners: Job formed.

2.2 VINYL MOLDING ACCESSORY

- A. Description: Vinyl nosing for carpet/transition strips.
- B. Locations: Provide vinyl molding accessories where carpet is terminated in locations other than walls. These locations include:
 - 1. Transitions between carpet and existing terrazzo, including doorways.

2.3 INSTALLATION MATERIALS

- A. Trowelable Leveling and Patching Compounds: Latex-modified, portland cement based or blended hydraulic-cement-based formulation provided or approved by resilient-product manufacturer for applications indicated.
- B. Adhesives: Water-resistant type recommended by resilient-product manufacturer for resilient products and substrate conditions indicated.
 - 1. Adhesives shall have a VOC content of 50 g/L or less.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
 - 1. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of resilient products.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.
 - 1. Installation of resilient products indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Prepare substrates according to manufacturer's written instructions to ensure adhesion of resilient products.

- B. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.
- C. Do not install resilient products until they are the same temperature as the space where they are to be installed.
 - 1. At least 48 hours in advance of installation, move resilient products and installation materials into spaces where they will be installed.
- D. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient products.

3.3 RESILIENT BASE INSTALLATION

- A. Comply with manufacturer's written instructions for installing resilient base.
- B. Apply resilient base to walls, columns, pilasters, casework and cabinets in toe spaces, and other permanent fixtures in rooms and areas where base is required.
- C. Install resilient base in lengths as long as practical without gaps at seams and with tops of adjacent pieces aligned.
- D. Tightly adhere resilient base to substrate throughout length of each piece, with base in continuous contact with horizontal and vertical substrates.
- E. Do not stretch resilient base during installation.
- F. On masonry surfaces or other similar irregular substrates, fill voids along top edge of resilient base with manufacturer's recommended adhesive filler material.
- G. Job-Formed Corners:
 - 1. Outside Corners: Use straight pieces of maximum lengths possible and form with returns not less than 3 inches (76 mm) in length.
 - a. Form without producing discoloration (whitening) at bends.
 - 2. Inside Corners: Use straight pieces of maximum lengths possible and form with returns not less than 3 inches (76 mm) in length.
 - a. Miter or cope corners to minimize open joints.

3.4 RESILIENT ACCESSORY INSTALLATION

- A. Comply with manufacturer's written instructions for installing resilient accessories.
- B. Resilient Molding Accessories: Butt to adjacent materials and tightly adhere to substrates throughout length of each piece. Install reducer strips at edges of floor covering that would otherwise be exposed.

3.5 CLEANING AND PROTECTION

- A. Comply with manufacturer's written instructions for cleaning and protecting resilient products.
- B. Perform the following operations immediately after completing resilient-product installation:
 - 1. Remove adhesive and other blemishes from exposed surfaces.
- C. Protect resilient products from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.
- D. Cover resilient products subject to wear and foot traffic until Substantial Completion.

END OF SECTION 096513

SECTION 096813 - TILE CARPETING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes modular carpet tile.
- B. Related Requirements:
 - 1. Section 096513, Resilient Base and Accessories for resilient wall base and accessories installed with carpet tile.

1.3 PREINSTALLATION MEETINGS

- A. Preinstallation Conference: Conduct conference at Project site.
 - 1. Review methods and procedures related to carpet tile installation including, but not limited to, the following:
 - a. Review delivery, storage, and handling procedures.
 - b. Review ambient conditions and ventilation procedures.
 - c. Review subfloor preparation procedures.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include manufacturer's written data on physical characteristics, durability, and fade resistance.
 - 2. Include installation recommendations for each type of substrate.
- B. Samples: For each of the following products and for each color and texture required. Label each Sample with manufacturer's name, material description, color, pattern, and designation indicated on Drawings and in schedules.
 - 1. Carpet Tile: Full-size Sample.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Product Test Reports: For carpet tile, for tests performed by a qualified testing agency.
- C. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Maintenance Data: For carpet tiles to include in maintenance manuals. Include the following:
 - 1. Methods for maintaining carpet tile, including cleaning and stain-removal products and procedures and manufacturer's recommended maintenance schedule.
 - 2. Precautions for cleaning materials and methods that could be detrimental to carpet tile.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Carpet Tile: Full-size units equal to 5 percent of amount installed for each type indicated, but not less than 10 sq. yd. (8.3 sq. m).

1.8 QUALITY ASSURANCE

- A. Fire-Test-Response Ratings: Where indicated, provide carpet tile identical to those of assemblies tested for fire response according to NFPA 253 by a qualified testing agency.
- B. Mockups: Build mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for fabrication and installation.
 - 1. Build mockups at locations and in sizes shown on Drawings.
 - 2. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Comply with CRI 104.

1.10 FIELD CONDITIONS

- A. Comply with CRI 104 for temperature, humidity, and ventilation limitations.
- B. Environmental Limitations: Do not deliver or install carpet tiles until spaces are enclosed and weathertight, wet work in spaces is complete and dry, and ambient temperature and humidity conditions are maintained at occupancy levels during the remainder of the construction period.
- C. Do not install carpet tiles over concrete slabs until slabs have cured and are sufficiently dry to bond with adhesive and concrete slabs have pH range recommended by carpet tile manufacturer.
- D. Where demountable partitions or other items are indicated for installation on top of carpet tiles, install carpet tiles before installing these items.

1.11 WARRANTY

- A. Special Warranty for Carpet Tiles: Manufacturer agrees to repair or replace components of carpet tile installation that fail in materials or workmanship within specified warranty period.
 - 1. Warranty does not include deterioration or failure of carpet tile due to unusual traffic, failure of substrate, vandalism, or abuse.
 - 2. Failures include, but are not limited to, more than 10 percent edge raveling, snags, runs, dimensional stability, loss of tuft bind strength, loss of face fiber, and delamination.
 - 3. Warranty Period: 10years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 CARPET TILE

- A. Products: Subject to compliance with requirements, provide the following:
 - 1. Patcraft Designweave, Speak Your Language Collection
- B. Color: Gallery Grey 00526

- C. Pattern: Speak in Color
- D. Fiber Type: Nylon
- E. Pile Characteristic: Multi-Level-loop pile.
- F. Pile Thickness: 3/32" to 7/32" for finished carpet tile.
- G. Stitches: 10 stitches per inch.
- H. Primary Backing/Backcoating: Manufacturer's standard composite materials.
- I. Secondary Backing: Manufacturer's standard material.
- J. Size: 24 by 24 inches (610 by 610 mm.)
- K. Applied Soil-Resistance Treatment: Manufacturer's standard material.
- L. Antimicrobial Treatment: Manufacturer's standard material.

2.2 INSTALLATION ACCESSORIES

- A. Trowelable Leveling and Patching Compounds: Latex-modified, hydraulic-cement-based formulation provided or recommended by carpet tile manufacturer.
- B. Adhesives: Water-resistant, mildew-resistant, nonstaining, pressure-sensitive type to suit products and subfloor conditions indicated, that complies with flammability requirements for installed carpet tile and is recommended by carpet tile manufacturer for releasable installation.
 - 1. Adhesives shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Adhesives shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. Metal Edge/Transition Strips: Extruded aluminum with mill finish of profile and width shown, of height required to protect exposed edge of carpet, and of maximum lengths to minimize running joints.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for maximum moisture content, alkalinity range, installation tolerances, and other conditions affecting carpet tile performance. Examine carpet tile for type, color, pattern, and potential defects.
- B. Concrete Subfloors: Verify that concrete slabs comply with ASTM F 710 and the following:
 - 1. Slab substrates are dry and free of curing compounds, sealers, hardeners, and other materials that may interfere with adhesive bond. Determine adhesion and dryness characteristics by performing bond and moisture tests recommended by carpet tile manufacturer.
 - 2. Subfloor finishes comply with requirements specified in Section 033000, "Cast-in-Place Concrete" for slabs receiving carpet tile.
 - 3. Subfloors are free of cracks, ridges, depressions, scale, and foreign deposits.

3.2 PREPARATION

- A. General: Comply with CRI 104, Section 6.2, "Site Conditions; Floor Preparation," and with carpet tile manufacturer's written installation instructions for preparing substrates indicated to receive carpet tile installation.
- B. Use trowelable leveling and patching compounds, according to manufacturer's written instructions, to fill cracks, holes, depressions, and protrusions in substrates. Fill or level cracks, holes and depressions 1/8 inch (3 mm) wide or wider and protrusions more than 1/32 inch (0.8 mm) unless more stringent requirements are required by manufacturer's written instructions.
- C. Remove coatings, including curing compounds, and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, without using solvents. Use mechanical methods recommended in writing by carpet tile manufacturer.
- D. Broom and vacuum clean substrates to be covered immediately before installing carpet tile.

3.3 INSTALLATION

- A. General: Comply with CRI 104, Section 14, "Carpet Modules," and with carpet tile manufacturer's written installation instructions.
- B. Installation Method: As recommended in writing by carpet tile manufacturer. Maintain dye lot integrity. Do not mix dye lots in same area.
- C. Cut and fit carpet tile to butt tightly to vertical surfaces, permanent fixtures, and built-in furniture including cabinets, pipes, outlets, edgings, thresholds, and nosings. Bind or seal cut edges as recommended by carpet tile manufacturer.
- D. Extend carpet tile into toe spaces, door reveals, closets, open-bottomed obstructions, removable flanges, alcoves, and similar openings.
- E. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on finish flooring as marked on subfloor. Use nonpermanent, nonstaining marking device.
- F. Install pattern parallel to walls and borders.
- G. Stagger joints of carpet tiles so carpet tile grid is offset from access flooring panel grid. Do not fill seams of access flooring panels with carpet adhesive; keep seams free of adhesive.

3.4 CLEANING AND PROTECTION

- A. Perform the following operations immediately after installing carpet tile:
 - 1. Remove excess adhesive, seam sealer, and other surface blemishes using cleaner recommended by carpet tile manufacturer.
 - 2. Remove yarns that protrude from carpet tile surface.
 - 3. Vacuum carpet tile using commercial machine with face-beater element.
- B. Protect installed carpet tile to comply with CRI 104, Section 16, "Protecting Indoor Installations."
- C. Protect carpet tile against damage from construction operations and placement of equipment and fixtures during the remainder of construction period. Use protection methods indicated or recommended in writing by carpet tile manufacturer.

END OF SECTION 096813

SECTION 099123 - INTERIOR PAINTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract apply to this Section.

1.2 SUMMARY

- A. Section includes surface preparation and the application of paint systems on interior substrates.
- B. Related Requirements:
 - 1. Division 05 Sections for shop priming of metal substrates with primers specified in these Sections.
 - 2. Division 08 Sections for factory priming frames and doors with primers specified in these Sections

1.3 DEFINITIONS

- A. Gloss Level 3: 10 to 25 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D 523.
- B. Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D 523.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include preparation requirements and application instructions.
- B. Samples for Verification: For each type of paint system and in each color and gloss of topcoat.
 - 1. Submit Samples on rigid backing, 8 inches (200 mm) square.
 - 2. Step coats on Samples to show each coat required for system.
 - 3. Label each coat of each Sample.
 - 4. Label each Sample for location and application area.
- C. Product List: For each product indicated, include the following:
 - 1. Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules.
 - 2. Printout of current "MPI Approved Products List" for each product category specified in Part 2, with the proposed product highlighted.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Paint: 5 percent, but not less than 1 gal. (3.8 L) of each material and color applied.

1.6 QUALITY ASSURANCE

A. Source Limitations: Use only one manufacturer's materials throughout the Project, except for special finishes as specified, and specialty items such as shellac, oils, waxes, and cleaners.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F (7 deg C).

- 1. Maintain containers in clean condition, free of foreign materials and residue.
- 2. Remove rags and waste from storage areas daily.

1.8 FIELD CONDITIONS

- A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F (10 and 35 deg C).
- B. Do not apply paints when relative humidity exceeds 85 percent; at temperatures less than 5 deg F (3 deg C) above the dew point; or to damp or wet surfaces.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Benjamin Moore & Co.
 - 2. Diamond Vogel Paints.
 - 3. ICI Paints.
 - 4. Iowa Paint Manufacturing Company, Inc.
 - Kwal Paint.
 - 6. PPG Architectural Finishes, Inc.
 - 7. Pratt & Lambert.
 - 8. Sherwin-Williams Company (The).

2.2 PAINT, GENERAL

- A. MPI Standards: Provide products that comply with MPI standards indicated and that are listed in its "MPI Approved Products List."
- B. Material Compatibility:
 - 1. Provide materials for use within each paint system that are compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 - 2. For each coat in a paint system, provide products recommended in writing by manufacturers of topcoat for use in paint system and on substrate indicated.
- C. Colors: As indicated on the drawings.

2.3 SOURCE QUALITY CONTROL

- A. Testing of Paint Materials: Owner reserves the right to invoke the following procedure:
 - 1. Owner will engage the services of a qualified testing agency to sample paint materials. Contractor will be notified in advance and may be present when samples are taken. If paint materials have already been delivered to Project site, samples may be taken at Project site. Samples will be identified, sealed, and certified by testing agency.
 - 2. Testing agency will perform tests for compliance with product requirements.
 - 3. Owner may direct Contractor to stop applying coatings if test results show materials being used do not comply with product requirements. Contractor shall remove noncomplying paint materials from Project site, pay for testing, and repaint surfaces painted with rejected materials. Contractor will be required to remove rejected materials from previously painted surfaces if, on repainting with complying materials, the two paints are incompatible.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
- B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 - 1. Wood: 15 percent.
 - 2. Gypsum Board: 12 percent.
- C. Gypsum Board Substrates: Verify that finishing compound is sanded smooth.
- D. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.
- E. Proceed with coating application only after unsatisfactory conditions have been corrected.
 - 1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

- A. Comply with manufacturer's written instructions and recommendations in "MPI Manual" applicable to substrates indicated.
- B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 - 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.
- C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 - 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.
- D. Steel Substrates: Remove rust and loose mill scale. Clean using methods recommended in writing by paint manufacturer but not less than the following:
 - 1. SSPC-SP 2, "Hand Tool Cleaning."
- E. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and abraded areas of shop paint, and paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.
- F. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal fabricated from coil stock by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied paints.
- G. Wood Substrates:
 - 1. Scrape and clean knots, and apply coat of knot sealer before applying primer.
 - 2. Sand surfaces that will be exposed to view, and dust off.
 - 3. Prime edges, ends, faces, undersides, and backsides of wood.
 - 4. After priming, fill holes and imperfections in the finish surfaces with putty or plastic wood filler. Sand smooth when dried.

3.3 APPLICATION

- A. Apply paints according to manufacturer's written instructions and to recommendations in "MPI Manual."
 - 1. Use applicators and techniques suited for paint and substrate indicated.
 - a. Spray application of paints will be permitted on wall surfaces and on exposed metal deck, and exposed structural roof system areas provided the application is by airless-type spray equipment, and provided the application by spray is followed by a roller on wall surfaces. Roller shall thoroughly work paint into pores for complete surface coverage. Conventional paint spray equipment will be permitted on metal door frames, metal doors, and other metal fabrications.
 - 2. Paint surfaces behind movable equipment and furniture same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed equipment or furniture with prime coat only.
 - 3. Paint front and backsides of access panels, removable or hinged covers, and similar hinged items to match exposed surfaces.
 - 4. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
 - 5. Primers specified in painting schedules may be omitted on items that are factory primed or factory finished if acceptable to topcoat manufacturers.
- B. Tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of same material are to be applied. Tint undercoats to match color of topcoat, but provide sufficient difference in shade of undercoats to distinguish each separate coat.
- C. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.
- D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.
- E. Painting Fire Suppression, Plumbing, HVAC, Electrical, Communication, and Electronic Safety and Security Work:
 - 1. Paint the following work where exposed in equipment rooms:
 - a. Equipment, including panelboards.
 - 2. Paint the following work where exposed in occupied spaces:
 - a. Equipment, including panelboards.
 - b. Uninsulated metal piping.
 - c. Uninsulated plastic piping.
 - d. Pipe hangers and supports.
 - e. Metal conduit.
 - f. Plastic conduit.
 - g. Duct, equipment, and pipe insulation having cotton or canvas insulation covering or other paintable jacket material.
 - h. Other items as directed by Architect.
 - 3. Paint portions of internal surfaces of metal ducts, without liner, behind air inlets and outlets that are visible from occupied spaces; color shall be flat black.

3.4 FIELD QUALITY CONTROL

- A. Dry Film Thickness Testing: Owner may engage the services of a qualified testing and inspecting agency to inspect and test paint for dry film thickness.
 - 1. Contractor shall touch up and restore painted surfaces damaged by testing.
 - 2. If test results show that dry film thickness of applied paint does not comply with paint manufacturer's written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with paint manufacturer's written recommendations.

3.5 CLEANING AND PROTECTION

- A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.
- B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.
- C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.
- At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.6 INTERIOR PAINTING SCHEDULE

A. Steel Substrates:

- 1. High-Performance Architectural Latex System:
 - a. Prime Coat: Shop primer specified in Division 05 Section where substrate is specified.
 - b. Intermediate Coat: Latex, interior, high performance architectural, matching topcoat.
 - c. Topcoat: Latex, interior, high performance architectural, semi-gloss (Gloss Level 5), MPI #141.

B. Galvanized-Metal Substrates:

- 1. Water-Based Dry-Fall System:
 - a. Prime Coat: Dry fall, water based, for galvanized steel, flat (Gloss Level 1), MPI #133.
 - b. Topcoat: Dry fall, water based, for galvanized steel, flat (Gloss Level 1), MPI #133.
- C. Wood Substrates: Including exposed electrical panel boards adjacent to finished surfaces.
 - 1. High-Performance Architectural Latex System:
 - a. Prime Coat: Primer, latex, for interior wood, MPI #39.
 - b. Intermediate Coat: Latex, interior, high performance architectural, matching topcoat.
 - c. Topcoat: Latex, interior, high performance architectural, (Gloss Level 3), MPI #139.

D. Fiberglass and Plastic Substrates:

- 1. High-Performance Architectural Latex System:
 - a. Prime Coat: Primer, bonding, water based, MPI #17.
 - b. Intermediate Coat: Latex, interior, high performance architectural, matching topcoat.
 - c. Topcoat: Latex, interior, high performance architectural, (Gloss Level 3), MPI #139.

E. Gypsum Board Substrates:

- 1. Latex System:
 - a. Prime Coat: Primer sealer, latex, interior, MPI #50.
 - b. Prime Coat: Latex, interior, matching topcoat.
 - c. Intermediate Coat: Latex, interior, matching topcoat.
 - d. Topcoat: Latex, interior, flat, (Gloss Level 1), MPI #53.

END OF SECTION 099123

SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pipe, tube, and fittings.
 - 2. Specialty pipe fittings.
 - 3. Encasement for underground metal piping.

1.3 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:
 - 1. Soil, Waste, and Vent Piping: 10-foot head of water (30 kPa).
 - 2. Waste, Force-Main Piping: 50 psig (345 kPa).

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
 - Sanitary sewer and vent piping
 - b. Airgap fitting

1.5 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

1.6 PROJECT CONDITIONS

- A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 - 1. Notify Construction Manager in writing no fewer than seven days in advance of proposed interruption of sanitary waste service.
 - 2. Do not proceed with interruption of sanitary waste service without Construction Manager's written permission.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 74, Service and Extra Heavy class(es), bearing collective trademark of CISPI and/or NSF International.

- B. Gaskets: ASTM C 564, rubber.
- C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.3 GALVANIZED-STEEL PIPE AND FITTINGS

- A. Galvanized-Steel Pipe: ASTM A 53/A 53M, Type E, Standard Weight class. Include square-cut-grooved or threaded ends matching joining method.
- B. Cast-Iron Drainage Fittings: ASME B16.12, threaded.
- C. Steel Pipe Pressure Fittings:
 - 1. Galvanized-Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M or ASTM A 106/A 106M, Schedule 40, seamless steel pipe. Include ends matching joining method.
 - 2. Malleable-Iron Unions: ASME B16.39; Class 150; hexagonal-stock body with ball-and-socket, metal-to-metal, bronze seating surface; and female threaded ends.
 - 3. Galvanized-Gray-Iron, Threaded Fittings: ASME B16.4, Class 125, standard pattern.
- D. Cast-Iron Flanges: ASME B16.1, Class 125.
 - 1. Flange Gasket Materials: ASME B16.21, full-face, flat, nonmetallic, asbestos-free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 - 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- E. Grooved-Joint, Galvanized-Steel-Pipe Appurtenances:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International; a subsidiary of Mueller Water Products, Inc.
 - b. Grinnell Mechanical Products.
 - c. Shurjoint Piping Products.
 - d. Victaulic Company.
 - 2. Galvanized, Grooved-End Fittings for Galvanized-Steel Piping: ASTM A 536 ductile-iron castings, ASTM A 47/A 47M malleable-iron castings, ASTM A 234/A 234M forged steel fittings, or ASTM A 106/A 106M steel pipes with dimensions matching ASTM A 53/A 53M steel pipe, and complying with AWWA C606 for grooved ends.
 - 3. Grooved Mechanical Couplings for Galvanized-Steel Piping: ASTM F 1476, Type I. Include ferrous housing sections with continuous curved keys; EPDM-rubber gasket suitable for hot and cold water; and bolts and nuts.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- K. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:
 - 1. Horizontal Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 (DN 80) and smaller; 1 percent downward in direction of flow for piping NPS 4 (DN 100) and larger.
 - 2. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.
- L. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
- M. Install steel piping according to applicable plumbing code.
- N. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- O. Install sleeve seals for piping penetrations of concrete walls and slabs. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.2 JOINT CONSTRUCTION

- A. Join hub-and-spigot, cast-iron soil piping with gasket joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Join hub-and-spigot, cast-iron soil piping with calked joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead-and-oakum calked joints.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- D. Flanged Joints: Align bolt holes. Select appropriate gasket material, size, type, and thickness. Install gasket concentrically positioned. Use suitable lubricants on bolt threads. Torque bolts in cross pattern.

3.3 VALVE INSTALLATION

A. Check Valves: Install swing check valve, between pump and shutoff valve, on each sewage pump discharge.

3.4 HANGER AND SUPPORT INSTALLATION

- 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
- 2. Install stainless-steel pipe hangers for horizontal piping in corrosive environments.
- 3. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
- 4. Install stainless-steel pipe support clamps for vertical piping in corrosive environments.
- 5. Vertical Piping: MSS Type 8 or Type 42, clamps.
- 6. Install individual, straight, horizontal piping runs:
 - a. 100 Feet (30 m) and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet (30 m): MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet (30 m) if Indicated: MSS Type 49, spring cushion rolls.
- 7. Multiple, Straight, Horizontal Piping Runs 100 Feet (30 m) or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
- 8. Base of Vertical Piping: MSS Type 52, spring hangers.
- B. Support horizontal piping and tubing within 12 inches (300 mm) of each fitting and coupling.
- C. Support vertical piping and tubing at base and at each floor.
- D. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch (10-mm) minimum rods.
- E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2 (DN 40 and DN 50): 60 inches (1500 mm) with 3/8-inch (10-mm) rod.
 - 2. NPS 3 (DN 80): 60 inches (1500 mm) with 1/2-inch (13-mm) rod.
 - 3. NPS 4 and NPS 5 (DN 100 and DN 125): 60 inches (1500 mm) with 5/8-inch (16-mm) rod.
 - 4. Spacing for 10-foot (3-m) lengths may be increased to 10 feet (3 m). Spacing for fittings is limited to 60 inches (1500 mm).
- F. Install supports for vertical cast-iron soil piping every 15 feet (4.5 m).
- G. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4 (DN 32): 84 inches (2100 mm) with 3/8-inch (10-mm) rod.
 - 2. NPS 1-1/2 (DN 40): 108 inches (2700 mm) with 3/8-inch (10-mm) rod.
 - 3. NPS 2 (DN 50): 10 feet (3 m) with 3/8-inch (10-mm) rod.
- H. Install supports for vertical steel piping every 15 feet (4.5 m).
- I. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.5 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect drainage and vent piping to the following:
 - 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 - 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.

- 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
- C. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
- D. Make connections according to the following unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 (DN 50) and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 (DN 65) and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.6 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping
 until it has been tested and approved. Expose work that was covered or concealed before it was
 tested
 - 3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water (30 kPa). From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
 - 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg (250 Pa). Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
 - 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 6. Prepare reports for tests and required corrective action.
- E. Test force-main piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Leave uncovered and unconcealed new, altered, extended, or replaced force-main piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 2. Cap and subject piping to static-water pressure of 50 psig (345 kPa) above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 - 3. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 4. Prepare reports for tests and required corrective action.

3.7 CLEANING AND PROTECTION

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.

3.8 PIPING SCHEDULE

- A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.
- B. Aboveground, soil and waste piping NPS 4 (DN 100) and smaller shall be any of the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Galvanized-steel pipe, drainage fittings, and threaded joints.
- C. Aboveground, vent piping NPS 4 (DN 100) and smaller shall be any of the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Galvanized-steel pipe, drainage fittings, and threaded joints.
- D. Aboveground, vent piping NPS 5 (DN 125) and larger shall be any of the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Galvanized-steel pipe, drainage fittings, and threaded joints.
- E. Aboveground sanitary-sewage force mains NPS 1-1/2 and NPS 2 (DN 40 and DN 50) shall be any of the following:
 - 1. Galvanized-steel pipe, pressure fittings, and threaded joints.

SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - Cleanouts.
 - 2. Miscellaneous sanitary drainage piping specialties.

1.3 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 CLEANOUTS

- A. Exposed or Concealed Metal Cleanouts:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Josam Company.
 - b. Smith, Jay R. Mfg. Co.
 - c. Tyler Pipe.
 - d. Watts Drainage Products.
 - e. Zurn Plumbing Products Group.
 - 2. Standard: ASME A112.36.2M for cast iron for cleanouts.
 - 3. Size: Same as connected drainage piping
 - 4. Body Material: cast-iron soil pipe T-branch cast-iron soil pipe test tee as required to match connected piping.
 - 5. Closure: Countersunk, brass or plastic plug.
 - 6. Closure Plug Size: Same as connected drainage piping.

2.2 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

- A. Air-Gap Fittings:
 - 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
 - 2. Body: Bronze or cast iron.
 - 3. Inlet: Opening in top of body.
 - 4. Outlet: Larger than inlet.
 - 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

2.3 FLASHING MATERIALS

A. Flashing materials shall be as specified in Division 07.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 - 1. Size same as drainage piping up to NPS 4 (DN 100). Use NPS 4 (DN 100) for larger drainage piping unless larger cleanout is indicated.
 - 2. Locate at each change in direction of piping greater than 45 degrees.
 - 3. Locate at minimum intervals of 50 feet (15 m) for piping NPS 4 (DN 100) and smaller and 100 feet (30 m) for larger piping. Verify with local codes.
 - 4. Locate at base of each vertical soil and waste stack.

3.2 PROTECTION

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

SECTION 221329 - SANITARY SEWERAGE PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Submersible effluent pumps.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For pumps and controls, to include in operation and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Pump Design Criteria: Pump shall be non-overloading at any point along its operating curve. Select pumps near the midrange of the curve, so the design capacity falls to the left of the best efficiency point. Impeller diameters shall not exceed 90 percent of the maximum impeller size cataloged by the pump manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Retain shipping flange protective covers and protective coatings during storage.
- B. Protect bearings and couplings against damage.
- C. Comply with pump manufacturer's written rigging instructions for handling.

1.7 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 SUBMERSIBLE EFFLUENT PUMPS

A. Submersible, Fixed-Position, Double-Seal Effluent Pumps:

- 1. Manufacturers: Subject to compliance with requirements, provide product as scheduled or by one of the following:
 - a. ABS Pumps Inc.
 - b. BJM Pumps, LLC.
 - c. Federal Pump Corp.
 - d. HOMA Pump Technology Inc.
 - e. KSB Inc.
 - f. Pentair Pump Group; Hydromatic Pumps;.
 - g. PX Pumps USA.
 - h. Stancor, Inc.
 - i. Tsurumi America, Inc.
 - j. WILO-EMU USA LLC.
 - k. Zoeller Company.
- 2. Description: Factory-assembled and -tested effluent-pump unit.
- 3. Pump Type: Submersible, end-suction, single-stage, close-coupled, overhung-impeller, centrifugal effluent pump as defined in Hydraulic Institute HI 1.1-1.2 and HI 1.3.
- 4. Pump Casing: Cast iron, with open inlet, legs that elevate pump to permit flow into impeller, and vertical discharge for piping connection.
- 5. Impeller: Statically and dynamically balanced ASTM B 584, cast bronze closed or semiopen design for clear wastewater, and keyed and secured to shaft.
- 6. Pump and Motor Shaft: Stainless steel with factory-sealed, grease-lubricated ball bearings.
- 7. Seals: Mechanical.
- 8. Moisture-Sensing Probe: Internal moisture sensor and moisture alarm.
- 9. Motor: Hermetically sealed, capacitor-start type; with built-in overload protection; lifting eye or lug; and three-conductor, waterproof power cable of length required and with grounding plug and cable-sealing assembly for connection at pump.
- 10. Controls:
 - a. Enclosure: NEMA 250, Type 1
 - b. Switch Type: Mercury-float type, in NEMA 250, Type 6 enclosures with mounting rod and electric cables.
 - c. High-Water Alarm: Rod-mounted, NEMA 250, Type 6 enclosure with mechanical-float, mercury-float, or pressure switch matching control and electric bell; 120-V ac, with transformer and contacts for remote alarm bell.

2.2 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 220513 "Common Motor Requirements for Plumbing Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
- B. Motors for submersible pumps shall be hermetically sealed.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for plumbing piping to verify actual locations of sanitary drainage and vent piping connections before sewage pump installation.

3.2 INSTALLATION

A. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.

3.3 CONNECTIONS

- A. Comply with requirements for piping specified in Section 221316 "Sanitary Waste and Vent Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow service and maintenance.

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- C. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection.
 - 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Pumps and controls will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports.

3.5 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

3.6 ADJUSTING

- A. Adjust pumps to function smoothly, and lubricate as recommended by manufacturer.
- B. Adjust control set points.

3.7 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain controls and pumps.

SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

- A. Comply with requirements in this Section except when stricter requirements are specified in HVAC equipment schedules or Sections.
- B. Comply with NEMA MG 1 unless otherwise indicated.

2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg F and at altitude of 3300 feet (1000 m) above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Efficiency: Energy efficient, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Multispeed Motors: Variable torque.
 - 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 - 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
- E. Rotor: Random-wound, squirrel cage.

- F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- G. Temperature Rise: Match insulation rating.
- H. Insulation: Class F.
- I. Code Letter Designation:
 - 1. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.
- J. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

- A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
- B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 - 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

2.5 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

SECTION 230517 - SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Stack-sleeve fittings.
 - 3. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
- C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
- D. Galvanized-Steel-Sheet Sleeves: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.

2.2 STACK-SLEEVE FITTINGS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Smith, Jay R. Mfg. Co.
 - 2. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.
- B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with setscrews.

2.3 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.

- C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
 - 1. Sleeves are not required for core-drilled holes.
- B. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 - 2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- C. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."
- D. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

- A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 - 1. Install fittings that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.
 - 2. Install section of cast-iron soil pipe to extend sleeve to 2 inches (50 mm) above finished floor level.
 - 3. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 4. Using grout, seal the space around outside of stack-sleeve fittings.
- B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.3 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6 (DN 150): Cast-iron wall sleeves, Galvanized-steel wall sleeves, or Galvanized-steel-pipe sleeves.
 - 2. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6 (DN 150): Galvanized-steel-pipe sleeves or Stack-sleeve fittings.

SECTION 230523 - GENERAL-DUTY VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Bronze ball valves.
 - 2. Bronze swing check valves.
- B. Related Sections:
 - 1. Section 230553 "Identification for HVAC Piping and Equipment" for valve tags and schedules.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. EPDM: Ethylene propylene copolymer rubber.
- C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
- D. NRS: Nonrising stem.
- E. OS&Y: Outside screw and yoke.
- F. RS: Rising stem.
- G. SWP: Steam working pressure.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 2. ASME B31.9 for building services piping valves.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 4. Block check valves in either closed or open position.

- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Refer to HVAC valve schedule articles for applications of valves.
- B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- C. Valve Sizes: Same as upstream piping unless otherwise indicated.
- D. Valve Actuator Types:
 - 1. Handwheel: For valves other than quarter-turn types.
 - 2. Handlever: For quarter-turn valves NPS 6 (DN 150) and smaller.
- E. Valves in Insulated Piping: With 2-inch (50-mm) stem extensions and the following features:
 - 1. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
- F. Valve-End Connections:
 - 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 - 2. Grooved: With grooves according to AWWA C606.
 - 3. Solder Joint: With sockets according to ASME B16.18.
 - 4. Threaded: With threads according to ASME B1.20.1.
- G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE BALL VALVES

- A. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Valve, Inc.
 - b. Conbraco Industries, Inc.; Apollo Valves.
 - c. Crane Co.; Crane Valve Group; Crane Valves.
 - d. Hammond Valve.
 - e. Lance Valves; a division of Advanced Thermal Systems, Inc.
 - f. Legend Valve.
 - g. Milwaukee Valve Company.
 - h. NIBCO INC.
 - i. Red-White Valve Corporation.
 - j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig (1035 kPa).
 - c. CWP Rating: 600 psig (4140 kPa).
 - d. Body Design: Two piece.

- e. Body Material: Bronze.
- f. Ends: Threaded.
- g. Seats: PTFE or TFE.
- h. Stem: Bronze.
- i. Ball: Chrome-plated brass.
- j. Port: Full.

2.3 BRONZE SWING CHECK VALVES

- A. Class 125, Bronze Swing Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Valve, Inc.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. Crane Co.; Crane Valve Group; Jenkins Valves.
 - d. Crane Co.; Crane Valve Group; Stockham Division.
 - e. Hammond Valve.
 - f. Kitz Corporation.
 - g. Milwaukee Valve Company.
 - h. NIBCO INC.
 - i. Powell Valves.
 - j. Red-White Valve Corporation.
 - k. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 1. Zy-Tech Global Industries, Inc.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 3.
 - b. CWP Rating: 200 psig (1380 kPa).
 - c. Body Design: Horizontal flow.
 - d. Body Material: ASTM B 62, bronze.
 - e. Ends: Threaded.
 - f. Disc: Bronze.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
 - 1. Shutoff Service: Ball valves.
 - 2. Pump-Discharge Check Valves:
 - a. NPS 2 (DN 50) and Smaller: Bronze swing check valves with bronze disc.

3.5 HEATING-WATER VALVE SCHEDULE

- A. Pipe NPS 2 (DN 50) and Smaller:
 - 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
 - 2. Ball Valves: Two piece, full port, bronze with bronze trim.
 - 3. Bronze Swing Check Valves: Class 125, bronze disc.

SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Metal pipe hangers and supports.
- 2. Trapeze pipe hangers.
- 3. Metal framing systems.
- 4. Thermal-hanger shield inserts.
- 5. Fastener systems.

B. Related Sections:

1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 - 1. Trapeze pipe hangers.
 - 2. Metal framing systems.
 - 3. Equipment supports.
- C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

- 1. Detail fabrication and assembly of trapeze hangers.
- 2. Design Calculations: Calculate requirements for designing trapeze hangers.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

- A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

- A. MFMA Manufacturer Metal Framing Systems:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Allied Tube & Conduit.
 - b. Cooper B-Line, Inc.
 - c. Flex-Strut Inc.
 - d. GS Metals Corp.
 - e. Thomas & Betts Corporation.
 - f. Unistrut Corporation; Tyco International, Ltd.
 - g. Wesanco, Inc.
 - 2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 - 3. Standard: MFMA-4.
 - 4. Channels: Continuous slotted steel channel with inturned lips.
 - 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 - 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
 - 7. Metallic Coating: Electroplated zinc.

- B. Non-MFMA Manufacturer Metal Framing Systems:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Anvil International; a subsidiary of Mueller Water Products Inc.
 - b. Empire Industries, Inc.
 - c. ERICO International Corporation.
 - d. Haydon Corporation; H-Strut Division.
 - e. NIBCO INC.
 - f. PHD Manufacturing, Inc.
 - g. PHS Industries, Inc.
 - 2. Description: Shop- or field-fabricated pipe-support assembly made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
 - 3. Standard: Comply with MFMA-4.
 - 4. Channels: Continuous slotted steel channel with inturned lips.
 - 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 - 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
 - 7. Coating: Paint.

2.4 THERMAL-HANGER SHIELD INSERTS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Carpenter & Paterson, Inc.
 - 2. Clement Support Services.
 - 3. ERICO International Corporation.
 - 4. National Pipe Hanger Corporation.
 - 5. PHS Industries, Inc.
 - 6. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
 - 7. Piping Technology & Products, Inc.
 - 8. Rilco Manufacturing Co., Inc.
 - 9. Value Engineered Products, Inc.
- B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig (688-kPa) or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig (862-kPa) minimum compressive strength and vapor barrier.
- C. Insulation-Insert Material for Hot Piping: ASTM C 552, Type II cellular glass with 100-psig (688-kPa) or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig (862-kPa) minimum compressive strength.
- D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- F. Insert Length: Extend 2 inches (50 mm) beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.6 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
- D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- E. Fastener System Installation:
 - Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches (100 mm) thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- G. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- H. Install lateral bracing with pipe hangers and supports to prevent swaying.
- I. Install building attachments within concrete slabs or attach to structural steel.
- J. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

K. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

L. Insulated Piping:

- 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
- 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.
- 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2 (DN 8 to DN 90): 12 inches (305 mm) long and 0.048 inch (1.22 mm) thick.
- 5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.3 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches (40 mm).

3.4 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils (0.05 mm).
- B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting"

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.5 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports, metal trapeze pipe hangers and metal framing systems and attachments for general service applications.
- F. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.
- G. Use padded hangers for piping that is subject to scratching.
- H. Use thermal-hanger shield inserts for insulated piping and tubing.
- I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30 (DN 15 to DN 750).
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F (566 deg C), pipes NPS 4 to NPS 24 (DN 100 to DN 600), requiring up to 4 inches (100 mm) of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36 (DN 20 to DN 900), requiring clamp flexibility and up to 4 inches (100 mm) of insulation.
 - 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 (DN 15 to DN 600) if little or no insulation is required.
 - 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4 (DN 15 to DN 100), to allow off-center closure for hanger installation before pipe erection.
 - 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8 (DN 20 to DN 200).
 - 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8 (DN 15 to DN 200).
 - 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8 (DN 15 to DN 200).
 - 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8 (DN 15 to DN 200).
 - 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8 (DN 10 to DN 200).
 - 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3 (DN 10 to DN 80).
 - 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30 (DN 15 to DN 750).
 - 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
 - 14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36 (DN 100 to DN 900), with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.

- 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36 (DN 100 to DN 900), with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
- 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 (DN 65 to DN 900) if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
- 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30 (DN 25 to DN 750), from two rods if longitudinal movement caused by expansion and contraction might occur.
- 18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24 (DN 65 to DN 600), from single rod if horizontal movement caused by expansion and contraction might occur.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 (DN 50 to DN 1050) if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 (DN 50 to DN 600) if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 (DN 50 to DN 750) if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
- J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24 (DN 24 to DN 600).
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 (DN 20 to DN 600) if longer ends are required for riser clamps.
- K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches (150 mm) for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F (49 to 232 deg C) piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F (49 to 232 deg C) piping installations.
- L. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.

- 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
- 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
- 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb (340 kg).
 - b. Medium (MSS Type 32): 1500 lb (680 kg).
 - c. Heavy (MSS Type 33): 3000 lb (1360 kg).
- 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- M. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- N. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 - 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches (32 mm).
 - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
 - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 - 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
 - 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
 - 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
 - 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
- O. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- P. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- Q. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Pipe labels.
 - 3. Valve tags.
 - 4. Warning tags.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- C. Valve numbering scheme.
- D. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Metal Labels for Equipment:
 - 1. Material and Thickness: Brass, 0.032-inch (0.8-mm) minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
 - 3. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 4. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

2.2 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches (38 mm) high.
 - 3. Color: Comply with ANSI/ASME 13.1.

2.3 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch (6.4-mm) letters for piping system abbreviation and 1/2-inch (13-mm) numbers.
 - 1. Tag Material: 1-1/2 inch; brass, 0.032-inch (0.8-mm) minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass wire-link or beaded chain; or S-hook.
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch (A4) bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

2.4 WARNING TAGS

- A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
 - 1. Size: Approximately 3 by 5-1/4 inches (75 by 133 mm) minimum.
 - 2. Fasteners: Brass grommet and wire.
 - 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
 - 4. Color: Yellow background with black lettering.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

- A. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet (15 m) along each run. Reduce intervals to 25 feet (7.6 m) in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.

3.4 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

3.5 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

SECTION 230719 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following HVAC piping systems:
 - 1. Condensate drain piping, indoors.
 - 2. Heating hot-water piping, indoors.
 - 3. Refrigerant suction and hot-gas piping, indoors and outdoors.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

- A. Schedule insulation application after pressure testing systems. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Pittsburgh Corning Corporation; Foamglas.
 - 2. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
 - 3. Preformed Pipe Insulation with Factory-Applied ASJ or ASJ-SSL: Comply with ASTM C 552, Type II, Class 2.
 - 4. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
- G. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Aeroflex USA, Inc.; Aerocel.
 - b. Armacell LLC; AP Armaflex.
 - c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.
- H. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Fibrex Insulations Inc.; Coreplus 1200.
 - b. Johns Manville; Micro-Lok.
 - c. Knauf Insulation; 1000-Degree Pipe Insulation.
 - d. Manson Insulation Inc.; Alley-K.
 - e. Owens Corning; Fiberglas Pipe Insulation.
 - 2. Type I, 850 deg F (454 deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ or with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

- I. Mineral-Fiber, Pipe Insulation Wicking System: Preformed pipe insulation complying with ASTM C 547, Type I, Grade A, with absorbent cloth factory-applied to the entire inside surface of preformed pipe insulation and extended through the longitudinal joint to outside surface of insulation under insulation jacket. Factory apply a white, polymer, vapor-retarder jacket with self-sealing adhesive tape seam and evaporation holes running continuously along the longitudinal seam, exposing the absorbent cloth.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Knauf Insulation; Permawick Pipe Insulation.
 - b. Owens Corning; VaporWick Pipe Insulation.
- J. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. (40 kg/cu. m) or more. Thermal conductivity (k-value) at 100 deg F (55 deg C) is 0.29 Btu x in./h x sq. ft. x deg F (0.042 W/m x K) or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; CrimpWrap.
 - b. Johns Manville: MicroFlex.
 - c. Knauf Insulation; Pipe and Tank Insulation.
 - d. Manson Insulation Inc.; AK Flex.
 - e. Owens Corning; Fiberglas Pipe and Tank Insulation.

2.2 INSULATING CEMENTS

- A. Mineral-Fiber Insulating Cement: Comply with ASTM C 195.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Ramco Insulation, Inc.; Super-Stik.
- B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Ramco Insulation, Inc.; Thermokote V.
- C. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F (minus 73 to plus 93 deg C).
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 81-84
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Aeroflex USA, Inc.; Aeroseal.
 - b. Armacell LLC; Armaflex 520 Adhesive.

- Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-
- d. K-Flex USA; R-373 Contact Adhesive.
- 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-127.
 - b. Eagle Bridges Marathon Industries; 225.
 - Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- E. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-82.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-50.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- F. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Corning Corporation; 739, Dow Silicone.
 - b. Johns Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - c. P.I.C. Plastics, Inc.; Welding Adhesive.
 - d. Speedline Corporation; Polyco VP Adhesive.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90.
 - b. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.

- C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-30.
 - b. Eagle Bridges Marathon Industries; 501.
 - Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-35.
 - d. Mon-Eco Industries, Inc.; 55-10.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm (0.03 metric perm) at 35-mil (0.9-mm) dry film thickness.
 - 3. Service Temperature Range: 0 to 180 deg F (Minus 18 to plus 82 deg C).
 - 4. Solids Content: ASTM D 1644, 44 percent by volume and 62 percent by weight.
 - 5. Color: White.
- D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Encacel.
 - b. Eagle Bridges Marathon Industries; 570.
 - Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 60-95/60-96.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm (0.033 metric perm) at 30-mil (0.8-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 50 to plus 220 deg F (Minus 46 to plus 104 deg C).
 - 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
 - 5. Color: White.
- E. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-10.
 - b. Eagle Bridges Marathon Industries; 550.
 - Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 46-50.
 - d. Mon-Eco Industries, Inc.; 55-50.
 - e. Vimasco Corporation; WC-1/WC-5.
 - 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms (1.2 metric perms) at 0.0625-inch (1.6-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
 - 4. Solids Content: 60 percent by volume and 66 percent by weight.
 - 5. Color: White.

2.5 SEALANTS

A. Joint Sealants:

- Joint Sealants for Cellular-Glass Products: Subject to compliance with requirements, provide one
 of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company;
 CP-76.
 - b. Eagle Bridges Marathon Industries; 405.
 - Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-45
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. Pittsburgh Corning Corporation; Pittseal 444.
- 2. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

- B. FSK and Metal Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - b. Eagle Bridges Marathon Industries; 405.
 - Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 - 5. Color: Aluminum.
 - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 - 5. Color: White.
 - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
 - 4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.
 - 5. PVDC Jacket for Indoor Applications: 4-mil- (0.10-mm-) thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perm (0.013 metric perm) when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 20 when tested according to ASTM E 84.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.
 - 6. Vinyl Jacket: White vinyl with a permeance of 1.3 perms (0.86 metric perms) when tested according to ASTM E 96/E 96M, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.7 FIELD-APPLIED FABRIC-REINFORCING MESH

- A. Woven Glass-Fiber Fabric: Approximately 2 oz./sq. yd. (68 g/sq. m) with a thread count of 10 strands by 10 strands/sq. in. (4 strands by 4 strands/sq. mm) for covering pipe and pipe fittings.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Chil-Glas Number 10.

- B. Woven Polyester Fabric: Approximately 1 oz./sq. yd. (34 g/sq. m) with a thread count of 10 strands by 10 strands/sq. in. (4 strands by 4 strands/sq. mm), in a Leno weave, for pipe.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Mast-A-Fab.
 - b. Vimasco Corporation; Elastafab 894.

2.8 FIELD-APPLIED CLOTHS

- A. Woven Glass-Fiber Fabric: Comply with MIL-C-20079H, Type I, plain weave, and presized a minimum of 8 oz./sq. yd. (271 g/sq. m).
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Alpha Associates, Inc.; Alpha-Maritex 84215 and 84217/9485RW, Luben 59.

2.9 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
- C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Johns Manville: Zeston.
 - b. P.I.C. Plastics, Inc.; FG Series.
 - c. Proto Corporation; LoSmoke.
 - d. Speedline Corporation; SmokeSafe.
 - 2. Adhesive: As recommended by jacket material manufacturer.
 - 3. Color: White.
 - 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

D. Metal Jacket:

- 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Metal Jacketing Systems.
 - b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 - c. RPR Products, Inc.; Insul-Mate.
- 2. Aluminum Jacket: Comply with ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - a. Sheet and roll stock ready for shop or field sizing or factory cut and rolled to size.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Indoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper or 2.5-mil- (0.063-mm-) thick polysurlyn.
 - d. Moisture Barrier for Outdoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper or 2.5-mil- (0.063-mm-) thick polysurlyn.
 - e. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - Beveled collars.

- 7) Valve covers.
- 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.10 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 428 AWF ASJ.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 - c. Compac Corporation; 104 and 105.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SO.
 - 2. Width: 3 inches (75 mm).
 - 3. Thickness: 11.5 mils (0.29 mm).
 - 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 491 AWF FSK.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - c. Compac Corporation; 110 and 111.
 - d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches (75 mm).
 - 3. Thickness: 6.5 mils (0.16 mm).
 - 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 370 White PVC tape.
 - b. Compac Corporation; 130.
 - c. Venture Tape; 1506 CW NS.
 - 2. Width: 2 inches (50 mm).
 - 3. Thickness: 6 mils (0.15 mm).
 - 4. Adhesion: 64 ounces force/inch (0.7 N/mm) in width.
 - 5. Elongation: 500 percent.
 - 6. Tensile Strength: 18 lbf/inch (3.3 N/mm) in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 488 AWF.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 - c. Compac Corporation; 120.
 - d. Venture Tape; 3520 CW.
 - 2. Width: 2 inches (50 mm).
 - 3. Thickness: 3.7 mils (0.093 mm).
 - 4. Adhesion: 100 ounces force/inch (1.1 N/mm) in width.
 - 5. Elongation: 5 percent.

- 6. Tensile Strength: 34 lbf/inch (6.2 N/mm) in width.
- E. PVDC Tape for Indoor Applications: White vapor-retarder PVDC tape with acrylic adhesive.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Chemical Company (The); Saran 540 Vapor Retarder Tape.
 - 2. Width: 3 inches (75 mm).
 - 3. Film Thickness: 4 mils (0.10 mm).
 - 4. Adhesive Thickness: 1.5 mils (0.04 mm).
 - 5. Elongation at Break: 145 percent.
 - 6. Tensile Strength: 55 lbf/inch (10.1 N/mm) in width.

2.11 SECUREMENTS

A. Bands:

- 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ITW Insulation Systems; Gerrard Strapping and Seals.
 - b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.
- 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch (0.38 mm) thick, 1/2 inch (13 mm) wide with wing seal or closed seal.
- 3. Aluminum: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 1/2 inch (13 mm) wide with wing seal or closed seal.
- 4. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.
- C. Wire: 0.080-inch (2.0-mm) nickel-copper alloy.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. C & F Wire.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - 1. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F (0 and 149 deg C) with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainlesssteel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches (50 mm) o.c.
 - a. For below-ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
 - 8. For services not specified to receive a field-applied jacket except for flexible elastomeric, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
 - 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF CELLULAR-GLASS INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward-clinched staples at 6 inches (150 mm) o.c.
 - 4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 - 2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of cellular-glass insulation to valve body.
 - Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.

3.7 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.8 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches (150 mm) o.c.
 - 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.

3.9 FIELD-APPLIED JACKET INSTALLATION

- A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 - 1. Draw jacket smooth and tight to surface with 2-inch (50-mm) overlap at seams and joints.
 - 2. Embed glass cloth between two 0.062-inch- (1.6-mm-) thick coats of lagging adhesive.

- 3. Completely encapsulate insulation with coating, leaving no exposed insulation.
- B. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch (38-mm) laps at longitudinal seams and 3-inch- (75-mm-) wide joint strips at end joints.
 - Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vaporbarrier mastic.
- C. Where PVC jackets are indicated, install with 1-inch (25-mm) overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- D. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.

3.10 FINISHES

- A. Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

3.11 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
- C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.12 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.13 INDOOR PIPING INSULATION SCHEDULE

- A. Condensate and Equipment Drain Water below 60 Deg F (16 Deg C):
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Cellular Glass: 1-1/2 inches (38 mm) thick.
 - b. Flexible Elastomeric: 3/4 inch (19 mm) thick.
 - c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch (13 mm) thick.
- B. Heating-Hot-Water Supply and Return, 200 Deg F (93 Deg C) and Below:
 - 1. NPS 1.25 (DN 30) and Smaller: Insulation shall be one of the following:
 - a. Cellular Glass: 1-1/2 inches (38 mm) thick.
 - b. Mineral-Fiber, Preformed Pipe, Type I: 1-1/2 inches (38 mm) thick.
- C. Refrigerant Suction and Hot-Gas Piping:
 - 1. NPS 3/4 (DN 20): Insulation shall be one of the following:
 - a. Flexible Elastomeric: 1/2 inch (13 mm) thick.
 - b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch (13 mm) thick.
 - 2. NPS 1 (DN 25) to NPS 6 (DN 150): Insulation shall be one of the following:
 - a. Cellular Glass: 1-1/2 inches (38 mm) thick.
 - b. Flexible Elastomeric: 1 inch (25 mm) thick.
 - c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch (25 mm) thick.
- D. Refrigerant Suction and Hot-Gas Flexible Tubing:
 - 1. NPS 3/4 (DN 20) and Smaller: Insulation shall be the following:
 - a. Flexible Elastomeric: 1/2 inch (13 mm) thick.
 - 2. NPS 1 (DN 25) and Larger: Insulation shall be the following:
 - a. Flexible Elastomeric: 1 inch (25 mm) thick.
- E. Dual-Service Heating and Cooling, 40 to 200 Deg F (5 to 93 Deg C):
 - 1. NPS 1.25 (DN 30) and Smaller: Insulation shall be one of the following:
 - a. Cellular Glass: 1-1/2 inches (38 mm) thick.
 - b. Mineral-Fiber, Preformed Pipe, Type I: 1-1/2 inches (38 mm) thick.
 - 2. NPS 1.5 (DN 38) and Larger: Insulation shall be one of the following:
 - a. Cellular Glass: 2 inches (50 mm) thick.
 - b. Mineral-Fiber, Preformed Pipe, Type I: 2 inches (50 mm) thick.

3.14 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

- A. Refrigerant Suction and Hot-Gas Piping:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Cellular Glass: 2 inches (50 mm) thick.
 - b. Flexible Elastomeric: 2 inches (50 mm) thick.
 - c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches (50 mm) thick.

- B. Refrigerant Suction and Hot-Gas Flexible Tubing:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Flexible Elastomeric: 1 inch (25 mm) thick.
 - b. Polyolefin: 1 inch (25 mm) thick.
- C. Dual-Service Heating and Cooling:
 - 1. NPS 1.25 (DN 30) and Smaller: Insulation shall be one of the following:
 - a. Cellular Glass: 1-1/2 inches (38 mm) thick.
 - b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inches (38 mm) thick.
 - 2. NPS 1.5 (DN 38) and Larger: Insulation shall be one of the following:
 - a. Cellular Glass: 2 inches (50 mm) thick.
 - b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches (50 mm) thick.

3.15 OUTDOOR, UNDERGROUND PIPING INSULATION SCHEDULE

A. Dual-Service Heating and Cooling, All Sizes, 40 to 200 Deg F (4 to 93 Deg C): Cellular glass, 3 inches (75 mm) thick.

3.16 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Exposed:
 - 1. Stainless Steel, Type 304 or Type 316, Smooth 2B Finish: 0.016 inch (0.41 mm) thick.

3.17 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
 - 1. Aluminum, Smooth or Corrugated: 0.024 inch (0.61 mm) thick.
 - 2. Painted Aluminum Smooth or Corrugated: 0.024 inch (0.61 mm) thick.
- D. Piping, Exposed:
 - Painted Aluminum, Smooth, Corrugated with Z-Shaped Locking Seam: 0.024 inch (0.61 mm) thick.

END OF SECTION 230719

SECTION 23 0900 - INSTRUMENTATION AND CONTROL FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes control equipment for HVAC systems and components, including control components for terminal heating and cooling units not supplied with factory-wired controls.

1.3 DEFINITIONS

- A. DDC: Direct digital control.
- B. I/O: Input/output.
- C. LonWorks: A control network technology platform for designing and implementing interoperable control devices and networks.
- D. MS/TP: Master slave/token passing.
- E. PC: Personal computer.
- F. PID: Proportional plus integral plus derivative.
- G. RTD: Resistance temperature detector.

1.4 SUBMITTALS

A. Product Data: Include manufacturer's technical literature for each control device. Indicate dimensions, capacities, performance characteristics, electrical characteristics, finishes for materials, and installation and startup instructions for each type of product indicated.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Automatic control system manufacturer's authorized representative who is trained and approved for installation of system components required for this Project.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Factory-Mounted Components: Where control devices specified in this Section are indicated to be factory mounted on equipment, arrange for shipping of control devices to equipment manufacturer.
- B. System Software: Update to latest version of software at Project completion.

1.7 COORDINATION

- A. Coordinate location of thermostats and other exposed control sensors with plans and room details before installation.
- B. Coordinate supply of conditioned electrical branch circuits for control units.
- C. Coordinate equipment to achieve compatibility with motor starters and annunciation devices.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 CONTROL SYSTEM

A. Control system shall consist of sensors, indicators, actuators, final control elements, interface equipment, other apparatus, and accessories to control mechanical systems.

2.3 THERMOSTATS

- A. Manufacturers:
 - 1. Trane
 - 2. Danfoss Inc.; Air-Conditioning and Refrigeration Div.
 - 3. Daikin.
 - 4. Sauter Controls Corporation.
 - 5. tekmar Control Systems, Inc.
 - 6. Theben AG Lumilite Control Technology, Inc.
- B. Combination Thermostat and Fan Switches: Line-voltage thermostat with push-button or lever-operated fan switch.
 - 1. Label switches "FAN CYCLE ON-OFF" "CONTINUOUS".
 - 2. Mount on single electric switch box.
- C. Electric, solid-state, microcomputer-based room thermostat with remote sensor.
 - 1. Automatic switching from heating to cooling.
 - 2. Preferential rate control to minimize overshoot and deviation from set point.
 - 3. Set up for four separate temperatures per day.
 - 4. Instant override of set point for continuous or timed period from 1 hour to 31 days.
 - 5. Short-cycle protection.
 - 6. Programming based on every day of week.
 - 7. Selection features include degree F or degree C display, 12- or 24-hour clock, keyboard disable, remote sensor, and fan on-auto.
 - 8. Battery replacement without program loss.
 - 9. Thermostat display features include the following:
 - a. Time of day.
 - b. Actual room temperature.
 - c. Programmed temperature.
 - d. Programmed time.
 - e. Duration of timed override.
 - f. Day of week.
 - g. System mode indications include "heating," "off," "fan auto," and "fan on."

- D. Low-Voltage, On-Off Thermostats: NEMA DC 3, 24-V, bimetal-operated, mercury-switch type, with adjustable or fixed anticipation heater, concealed set-point adjustment, 55 to 85 deg F (13 to 30 deg C) set-point range, and 2 deg F (1 deg C) maximum differential.
- E. Line-Voltage, On-Off Thermostats: Bimetal-actuated, open contact or bellows-actuated, enclosed, snapswitch or equivalent solid-state type, with heat anticipator; listed for electrical rating; with concealed setpoint adjustment, 55 to 85 deg F (13 to 30 deg C) set-point range, and 2 deg F (1 deg C) maximum differential.
 - 1. Electric Heating Thermostats: Equip with off position on dial wired to break ungrounded conductors.
 - 2. Selector Switch: Integral, manual on-off-auto.
- F. Remote-Bulb Thermostats: On-off or modulating type, liquid filled to compensate for changes in ambient temperature; with copper capillary and bulb, unless otherwise indicated.
 - 1. Bulbs in fin tube shroud securely mounted.
 - 2. Scale settings and differential settings are clearly visible and adjustable from front of instrument.
 - 3. On-Off Thermostat: With precision snap switches and with electrical ratings required by application.
 - 4. Modulating Thermostats: Construct so complete potentiometer coil and wiper assembly is removable for inspection or replacement without disturbing calibration of instrument.

2.4 CONTROL VALVES

- A. Manufacturers:
 - 1. Danfoss Inc.; Air Conditioning & Refrigeration Div.
 - 2. Erie Controls.
 - 3. Hayward Industrial Products, Inc.
 - 4. Magnatrol Valve Corporation.
 - 5. Neles-Jamesbury.
 - 6. Parker Hannifin Corporation; Skinner Valve Division.
 - 7. Pneuline Controls.
 - 8. Sauter Controls Corporation.
- B. Control Valves: Factory fabricated, of type, body material, and pressure class based on maximum pressure and temperature rating of piping system, unless otherwise indicated.
- C. Hydronic system globe valves shall have the following characteristics:
 - 1. NPS 2 (DN 50) and Smaller: Class 125 bronze body, bronze trim, rising stem, renewable composition disc, and screwed ends with backseating capacity repackable under pressure.
 - 2. Internal Construction: Replaceable plugs and stainless-steel or brass seats.
 - Single-Seated Valves: Cage trim provides seating and guiding surfaces for plug on top and bottom.
 - 3. Sizing: 3-psig (21-kPa) maximum pressure drop at design flow rate or the following:
 - a. Two Position: Line size.
 - b. Two-Way Modulating: Either the value specified above or twice the load pressure drop, whichever is more.
 - c. Three-Way Modulating: Twice the load pressure drop, but not more than value specified above.
 - 4. Flow Characteristics: Two-way valves shall have equal percentage characteristics; three-way valves shall have linear characteristics.
 - 5. Close-Off (Differential) Pressure Rating: Combination of actuator and trim shall provide minimum close-off pressure rating of 150 percent of total system (pump) head for two-way valves and 100 percent of pressure differential across valve or 100 percent of total system (pump) head.

- D. Terminal Unit Control Valves: Bronze body, bronze trim, two or three ports as indicated, replaceable plugs and seats, and union and threaded ends.
 - 1. Rating: Class 125 for service at 125 psig (860 kPa) and 250 deg F (121 deg C) operating conditions.
 - 2. Sizing: 3-psig (21-kPa) maximum pressure drop at design flow rate, to close against pump shutoff head.
 - 3. Flow Characteristics: Two-way valves shall have equal percentage characteristics; three-way valves shall have linear characteristics.
- E. Self-Contained Control Valves: Bronze body, bronze trim, two or three ports as indicated, replaceable plugs and seats, and union and threaded ends.
 - 1. Rating: Class 125 for service at 125 psig (860 kPa) and 250 deg F (121 deg C) operating conditions.
 - 2. Thermostatic Operator: Liquid-filled remote sensor with integral adjustable dial.

2.5 CONTROL CABLE

A. Electronic and fiber-optic cables for control wiring are specified on Electrical Plans.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Connect and configure equipment and software to achieve sequence of operation specified.
- B. Verify location of thermostats, humidistats, and other exposed control sensors with Drawings and room details before installation. Install devices 48 inches (1220 mm) above the floor.
- C. Install labels and nameplates to identify control components according to Section 23 0553, IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT.
- D. Install hydronic instrument wells, valves, and other accessories according to Section 23 2113, HYDRONIC PIPING.
- E. Install electronic and fiber-optic cables according to instructions on Electrical Plans.

3.2 ELECTRICAL WIRING AND CONNECTION INSTALLATION

- A. Install raceways, boxes, and cabinets according to instructions on Electrical Plans.
- B. Install building wire and cable according to instructions on Electrical Plans.
- C. Install signal and communication cable according to instructions on Electrical Plans.
 - 1. Conceal cable, except in mechanical rooms and areas where other conduit and piping are exposed.
 - 2. Install exposed cable in raceway.
 - 3. Install concealed cable in raceway.
 - 4. Bundle and harness multiconductor instrument cable in place of single cables where several cables follow a common path.
 - 5. Fasten flexible conductors, bridging cabinets and doors, along hinge side; protect against abrasion. Tie and support conductors.
 - 6. Number-code or color-code conductors for future identification and service of control system, except local individual room control cables.
 - 7. Install wire and cable with sufficient slack and flexible connections to allow for vibration of piping and equipment.

- D. Connect manual-reset limit controls independent of manual-control switch positions. Automatic duct heater resets may be connected in interlock circuit of power controllers.
- E. Connect hand-off-auto selector switches to override automatic interlock controls when switch is in hand position.

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.
- B. Perform the following field tests and inspections and prepare test reports:
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation. Remove and replace malfunctioning units and retest.
 - 2. Test and adjust controls and safeties.
 - 3. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 4. Pressure test control air piping at 30 psig (207 kPa) or 1.5 times the operating pressure for 24 hours, with maximum 5-psig (35-kPa) loss.
 - 5. Pressure test high-pressure control air piping at 150 psig (1034 kPa) and low-pressure control air piping at 30 psig (207 kPa) for 2 hours, with maximum 1-psig (7-kPa) loss.
 - 6. Test calibration of electronic controllers by disconnecting input sensors and stimulating operation with compatible signal generator.
 - 7. Test each point through its full operating range to verify that safety and operating control set points are as required.
 - 8. Test each control loop to verify stable mode of operation and compliance with sequence of operation. Adjust PID actions.
 - 9. Test each system for compliance with sequence of operation.
 - 10. Test software and hardware interlocks.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC instrumentation and controls. Refer to Section01 7900, DEMONSTRATION AND TRAINING.

END OF SECTION 23 0900

SECTION 23 0993 - SEQUENCE OF OPERATIONS FOR HVAC CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes control sequences for HVAC systems, subsystems, and equipment.
- B. Related Sections include the following:
 - 1. Section 23 0900, INSTRUMENTATION AND CONTROL FOR HVAC, for control equipment and devices and for submittal requirements.

1.3 DEFINITIONS

- A. DDC: Direct digital control.
- B. VAV: Variable air volume.

1.4 TERMINAL UNIT OPERATING SEQUENCE

- A. Cabinet Unit Heater, Hydronic:
 - 1. Room Temperature:
 - a. Input Device: Unit mounted thermostat.
 - b. Output Device: Unit mounted thermostat.
 - c. Action: Cycle fan to maintain temperature and modulate heating control valve.
- B. Unit Heater, Hydronic:
 - 1. Room Temperature:
 - a. Input Device: Unit mounted thermostat.
 - b. Output Device: Unit mounted thermostat.
 - c. Action: Cycle fan to maintain temperature and modulate valve.
- C. Radiant Heating Panel, Hydronic:
 - 1. Room Temperature:
 - a. Input Device: Room thermostat.
 - b. Output Device: Electronic control-valve operator.
 - c. Action: Modulate valve to maintain temperature.
- D. Radiators and Convectors, Hydronic:
 - 1. Room Temperature:
 - a. Input Device: Self-contained thermostat control valve.
 - b. Output Device: Self-contained thermostat.
 - c. Action: Modulate valve to maintain temperature.

- E. Split-System Air Conditioners:
 - 1. Room Temperature:
 - a. Input Device: Room thermostat.
 - b. Output Device: Room thermostat.
 - c. Action: Modulate and cycle heat pump systems in accordance with the manufacturer's sequence of operation.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 23 0993

SECTION 232113 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes pipe and fitting materials, joining methods, special-duty valves, and specialties for the following:
 - 1. Hot-water heating piping.
 - 2. Condensate-drain piping.

1.3 DEFINITIONS

- A. PTFE: Polytetrafluoroethylene.
- B. RTRF: Reinforced thermosetting resin (fiberglass) fittings.
- C. RTRP: Reinforced thermosetting resin (fiberglass) pipe.

1.4 PERFORMANCE REQUIREMENTS

- A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature:
 - 1. Hot-Water Heating Piping: 350 psig at 250 deg F.
 - 2. Condensate-Drain Piping: 100 deg F.

1.5 SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Air control devices.
 - 2. Hydronic specialties.
- B. Welding certificates.
- C. Qualification Data: For Installer.
- D. Field quality-control test reports.
- E. Operation and Maintenance Data: For air control devices, hydronic specialties, and special-duty valves to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."

- Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 01.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Drawn-Temper Copper Tubing: ASTM B 88, Type L (ASTM B 88M, Type B).
- B. Annealed-Temper Copper Tubing: ASTM B 88, Type K (ASTM B 88M, Type A).
- C. DWV Copper Tubing: ASTM B 306, Type DWV.
- D. Wrought-Copper Fittings: ASME B16.22.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.
 - b. S. P. Fittings; a division of Star Pipe Products.
 - c. Victaulic Company.
 - 2. Grooved-End Copper Fittings: ASTM B 75 (ASTM B 75M), copper tube or ASTM B 584, bronze casting.
 - 3. Grooved-End-Tube Couplings: Rigid pattern, unless otherwise indicated; gasketed fitting. Ductile-iron housing with keys matching pipe and fitting grooves, prelubricated EPDM gasket rated for minimum 230 deg F (110 deg C) for use with housing, and steel bolts and nuts.
- E. Wrought-Copper Unions: ASME B16.22.

2.2 STEEL PIPE AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; type, grade, and wall thickness as indicated in Part 3 "Piping Applications" Article.
- B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250 as indicated in Part 3 "Piping Applications" Article.
- C. Malleable-Iron Threaded Fittings: ASME B16.3, Classes 150 and 300 as indicated in Part 3 "Piping Applications" Article.
- D. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in Part 3 "Piping Applications" Article.
- E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in Part 3 "Piping Applications" Article.
- F. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.
- G. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - 1. Material Group: 1.1.
 - 2. End Connections: Butt welding.

- H. Grooved Mechanical-Joint Fittings and Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.
 - b. S. P. Fittings; a division of Star Pipe Products.
 - c. Victaulic Company.
 - 2. Joint Fittings: ASTM A 536, Grade 65-45-12 ductile iron; ASTM A 47/A 47M, Grade 32510 malleable iron; ASTM A 53/A 53M, Type F, E, or S, Grade B fabricated steel; or ASTM A 106, Grade B steel fittings with grooves or shoulders constructed to accept grooved-end couplings; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.
 - 3. Couplings: Ductile- or malleable-iron housing and synthetic rubber gasket of central cavity pressure-responsive design; with nuts, bolts, locking pin, locking toggle, or lugs.

2.3 JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
- B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- D. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.
- E. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- F. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.4 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Unions:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. Hart Industries International, Inc.
 - d. Jomar International Ltd.
 - e. Matco-Norca, Inc.
 - f. McDonald, A. Y. Mfg. Co.
 - g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - h. Wilkins; a Zurn company.
 - 2. Description:
 - a. Standard: ASSE 1079.
 - b. Pressure Rating: 125 psig (860 kPa) minimum at 180 deg F (82 deg C).
 - c. End Connections: Solder-joint copper alloy and threaded ferrous.

- C. Dielectric-Flange Insulating Kits:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Description:
 - a. Nonconducting materials for field assembly of companion flanges.
 - b. Pressure Rating: 125 psig (860 kPa).
 - c. Gasket: Neoprene or phenolic.
 - d. Bolt Sleeves: Phenolic or polyethylene.
 - e. Washers: Phenolic with steel backing washers.

2.5 VALVES

- A. Gate, Globe, Check, Ball, and Butterfly Valves: Comply with requirements specified in Division 23 Section "General-Duty Valves for HVAC Piping."
- B. Automatic Temperature-Control Valves, Actuators, and Sensors: Comply with requirements specified in Division 23 Section "Instrumentation and Control for HVAC."
- C. Automatic Flow-Control Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Flow Design Inc.
 - b. Griswold Controls.
 - c. Nexus Valve.
 - 2. Body: Brass or ferrous metal.
 - 3. Piston and Spring Assembly: Stainless steel, tamper proof, self cleaning, and removable.
 - 4. Combination Assemblies: Include bonze or brass-alloy ball valve.
 - 5. Identification Tag: Marked with zone identification, valve number, and flow rate.
 - 6. Size: Same as pipe in which installed.
 - 7. Performance: Maintain constant flow, plus or minus 5 percent over system pressure fluctuations.
 - 8. Minimum CWP Rating: 175 psig (1207 kPa).
 - 9. Maximum Operating Temperature: 200 deg F (93 deg C).

2.6 AIR CONTROL DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Amtrol, Inc.
 - 2. Armstrong Pumps, Inc.
 - 3. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - 4. Taco.
- B. Manual Air Vents:
 - 1. Body: Bronze.
 - 2. Internal Parts: Nonferrous.
 - 3. Operator: Screwdriver or thumbscrew.
 - 4. Inlet Connection: NPS 1/2 (DN 15).
 - 5. Discharge Connection: NPS 1/8 (DN 6).
 - 6. CWP Rating: 150 psig (1035 kPa).
 - 7. Maximum Operating Temperature: 225 deg F (107 deg C).

2.7 HYDRONIC PIPING SPECIALTIES

A. Y-Pattern Strainers:

- 1. Body: ASTM A 126, Class B, cast iron for steel pipe; ASTM B 62, bronze for copper pipe; with bottom drain connection.
- 2. End Connections: Threaded ends for NPS 2 (DN 50) and smaller; flanged ends for NPS 2-1/2 (DN 65) and larger.
- 3. Strainer Screen: 20-mesh on strainers NPS 2 (DN 50) and smaller, stainless steel perforated baskets with 0.062 inch openings.
- 4. CWP Rating: 125 psig (860 kPa).

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Hot-water heating piping, aboveground, NPS 2 (DN 50) and smaller, shall be the following:
 - 1. Type L (B), drawn-temper copper tubing, wrought-copper fittings, and soldered or brazed joints.
 - 2. Schedule 40 steel pipe; Class 125, cast-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
- B. Condensate-Drain Piping: Type DWV, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.

3.2 VALVE APPLICATIONS

- A. Install shutoff-duty valves at each branch connection to supply mains, and at supply connection to each piece of equipment.
- B. Install check valves at each pump discharge and elsewhere as required to control flow direction.

3.3 PIPING INSTALLATIONS

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.

- J. Select system components with pressure rating equal to or greater than system operating pressure.
- K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
- L. Install drains, consisting of a tee fitting, NPS 3/4 (DN 20) ball valve, and short NPS 3/4 (DN 20) threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
- M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.
- N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.
- O. Install branch connections to mains using mechanically formed tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.
- P. Install valves according to Division 23 Section "General-Duty Valves for HVAC Piping."
- Q. Install unions in piping, NPS 2 (DN 50) and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.
- R. Install flanges in piping, NPS 2-1/2 (DN 65) and larger, at final connections of equipment and elsewhere as indicated.
- S. Install strainers on inlet side of each control valve, and elsewhere as indicated. Install NPS 3/4 (DN 20) nipple and ball valve in blowdown connection of strainers NPS 2 (DN 50) and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2 (DN 50).
- T. Install expansion loops, expansion joints, anchors, and pipe alignment guides as specified in Division 23 Section "Expansion Fittings and Loops for HVAC Piping."
- U. Identify piping as specified in Division 23 Section "Identification for HVAC Piping and Equipment."
- V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."
- W. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 23 Section "Escutcheons for HVAC Piping."

3.4 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor devices are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment." Comply with the following requirements for maximum spacing of supports.
- B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet (6 m) long.
 - 2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet (6 m) or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet (6 m) or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
 - 6. On plastic pipe, install pads or cushions on bearing surfaces to prevent hanger from scratching pipe.

- C. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4 (DN 20): Maximum span, 7 feet (2.1 m); minimum rod size, 1/4 inch (6.4 mm).
 - 2. NPS 1 (DN 25): Maximum span, 7 feet (2.1 m); minimum rod size, 1/4 inch (6.4 mm).
 - 3. NPS 1-1/2 (DN 40): Maximum span, 9 feet (2.7 m); minimum rod size, 3/8 inch (10 mm).
 - 4. NPS 2 (DN 50): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (10 mm).
- D. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4 (DN 20): Maximum span, 5 feet (1.5 m); minimum rod size, 1/4 inch (6.4 mm).
 - 2. NPS 1 (DN 25): Maximum span, 6 feet (1.8 m); minimum rod size, 1/4 inch (6.4 mm).
 - 3. NPS 1-1/2 (DN 40): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8 inch (10 mm).
 - 4. NPS 2 (DN 50): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8 inch (10 mm).
 - 5. NPS 2-1/2 (DN 65): Maximum span, 9 feet (2.7 m); minimum rod size, 3/8 inch (10 mm).
- E. Support vertical runs at roof, at each floor, and at 10-foot (3-m) intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- I. Grooved Joints: Assemble joints with coupling and gasket, lubricant, and bolts. Cut or roll grooves in ends of pipe based on pipe and coupling manufacturer's written instructions for pipe wall thickness. Use grooved-end fittings and rigid, grooved-end-pipe couplings.

3.6 HYDRONIC SPECIALTIES INSTALLATION

A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.

3.7 TERMINAL EQUIPMENT CONNECTIONS

- A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.
- B. Install control valves in accessible locations close to connected equipment.
- C. Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required.
- D. Install ports for pressure gages and thermometers at coil inlet and outlet connections according to Division 23 Section "Meters and Gages for HVAC Piping."

3.8 CHEMICAL TREATMENT

- A. Perform an analysis of makeup water to determine type and quantities of chemical treatment needed to keep system free of scale, corrosion, and fouling, and to sustain the following water characteristics:
 - 1. pH: 9.0 to 10.5.
 - 2. "P" Alkalinity: 100 to 500 ppm.
 - 3. Boron: 100 to 200 ppm.
 - 4. Chemical Oxygen Demand: Maximum 100 ppm. Modify this value if closed system contains glycol.
 - 5. Corrosion Inhibitor:
 - a. Sodium Nitrate: 1000 to 1500 ppm.
 - b. Molybdate: 200 to 300 ppm.
 - c. Chromate: 200 to 300 ppm.
 - d. Sodium Nitrate Plus Molybdate: 100 to 200 ppm each.
 - e. Chromate Plus Molybdate: 50 to 100 ppm each.
 - 6. Soluble Copper: Maximum 0.20 ppm.
 - 7. Tolyiriazole Copper and Yellow Metal Corrosion Inhibitor: Minimum 10 ppm.
 - 8. Total Suspended Solids: Maximum 10 ppm.
 - 9. Ammonia: Maximum 20 ppm.
 - 10. Free Caustic Alkalinity: Maximum 20 ppm.

3.9 FIELD QUALITY CONTROL

- A. Prepare hydronic piping according to ASME B31.9 and as follows:
 - 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 - 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 - 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
 - 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 - 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.
- B. Perform the following tests on hydronic piping:
 - 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 - 2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
 - 3. Isolate expansion tanks and determine that hydronic system is full of water.
 - 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical

- runs does not exceed 90 percent of specified minimum yield strength or 1.7 times "SE" value in Appendix A in ASME B31.9, "Building Services Piping."
- 5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
- 6. Prepare written report of testing.
- C. Perform the following before operating the system:
 - 1. Open manual valves fully.
 - 2. Inspect pumps for proper rotation.
 - 3. Set makeup pressure-reducing valves for required system pressure.
 - 4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
 - 5. Set temperature controls so all coils are calling for full flow.
 - 6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
 - 7. Verify lubrication of motors and bearings.

END OF SECTION 232113

SECTION 23 2300 - REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes refrigerant piping used for air-conditioning applications.

1.3 PERFORMANCE REQUIREMENTS

- A. Line Test Pressure for Refrigerant R-410A:
 - 1. Suction Lines for Air-Conditioning Applications: 300 psig (2068 kPa).
 - 2. Suction Lines for Heat-Pump Applications: 535 psig (3689 kPa).
 - 3. Hot-Gas and Liquid Lines: 535 psig (3689 kPa).

1.4 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
- B. Comply with ASHRAE 15, "Safety Code for Refrigeration Systems."
- C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.5 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

1.6 COORDINATION

A. Coordinate size and location of roof curbs, equipment supports, and roof penetrations. These items are specified in Section 07 7200, ROOF ACCESSORIES.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Copper Tube: ASTM B 88, Type K or L (ASTM B 88M, Type A or B).
- B. Wrought-Copper Fittings: ASME B16.22.
- C. Wrought-Copper Unions: ASME B16.22.
- D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.
- E. Brazing Filler Metals: AWS A5.8.

F. Flexible Connectors:

- 1. Body: Tin-bronze bellows with woven, flexible, tinned-bronze-wire-reinforced protective jacket.
- 2. End Connections: Socket ends.
- 3. Offset Performance: Capable of minimum 3/4-inch (20-mm) misalignment in minimum 7-inch-(180-mm-) long assembly.
- 4. Pressure Rating: Factory test at minimum 500 psig (3450 kPa).
- 5. Maximum Operating Temperature: 250 deg F (121 deg C).

2.2 STEEL PIPE AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; Type, Grade, and wall thickness as selected in Part 3 piping applications articles.
- B. Wrought-Steel Fittings: ASTM A 234/A 234M, for welded joints.
- C. Steel Flanges and Flanged Fittings: ASME B16.5, steel, including bolts, nuts, and gaskets, bevel-welded end connection, and raised face.
- D. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

E. Flanged Unions:

- 1. Body: Forged-steel flanges for NPS 1 to NPS 1-1/2 (DN 25 to DN 40) and ductile iron for NPS 2 to NPS 3 (DN 50 to DN 80). Apply rust-resistant finish at factory.
- 2. Gasket: Fiber asbestos free.
- 3. Fasteners: Four plated-steel bolts, with silicon bronze nuts. Apply rust-resistant finish at factory.
- 4. End Connections: Brass tailpiece adapters for solder-end connections to copper tubing.
- 5. Offset Performance: Capable of minimum 3/4-inch (20-mm) misalignment in minimum 7-inch- (180-mm-) long assembly.
- 6. Pressure Rating: Factory test at minimum 400 psig (2760 kPa).
- 7. Maximum Operating Temperature: 330 deg F (165 deg C).

F. Flexible Connectors:

- 1. Body: Stainless-steel bellows with woven, flexible, stainless-steel-wire-reinforced protective jacket
- 2. End Connections:
 - a. NPS 2 (DN 50) and Smaller: With threaded-end connections.
 - b. NPS 2-1/2 (DN 65) and Larger: With flanged-end connections.
- 3. Offset Performance: Capable of minimum 3/4-inch (20-mm) misalignment in minimum 7-inch-(180-mm-) long assembly.
- 4. Pressure Rating: Factory test at minimum 500 psig (3450 kPa).
- 5. Maximum Operating Temperature: 250 deg F (121 deg C).

2.3 VALVES AND SPECIALTIES

A. Diaphragm Packless Valves:

- 1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.
- 2. Diaphragm: Phosphor bronze and stainless steel with stainless-steel spring.
- 3. Operator: Rising stem and hand wheel.
- 4. Seat: Nylon.
- 5. End Connections: Socket, union, or flanged.
- 6. Working Pressure Rating: 500 psig (3450 kPa).
- 7. Maximum Operating Temperature: 275 deg F (135 deg C).

B. Check Valves:

- 1. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
- 2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
- 3. Piston: Removable polytetrafluoroethylene seat.
- 4. Closing Spring: Stainless steel.
- 5. Manual Opening Stem: Seal cap, plated-steel stem, and graphite seal.
- 6. End Connections: Socket, union, threaded, or flanged.
- 7. Maximum Opening Pressure: 0.50 psig (3.4 kPa).
- 8. Working Pressure Rating: 500 psig (3450 kPa).
- 9. Maximum Operating Temperature: 275 deg F (135 deg C).

C. Service Valves:

- 1. Body: Forged brass with brass cap including key end to remove core.
- 2. Core: Removable ball-type check valve with stainless-steel spring.
- 3. Seat: Polytetrafluoroethylene.
- 4. End Connections: Copper spring.
- 5. Working Pressure Rating: 500 psig (3450 kPa).

2.4 REFRIGERANTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Atofina Chemicals, Inc.
 - 2. DuPont Company; Fluorochemicals Div.
 - 3. Honeywell, Inc.; Genetron Refrigerants.
 - 4. INEOS Fluor Americas LLC.
- B. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR REFRIGERANT R-410A

- A. Suction Lines NPS 1-1/2 (DN 40) and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed joints.
- B. Suction Lines NPS 2 to NPS 3-1/2 (DN 50 to DN 90) for Conventional Air-Conditioning Applications: Copper, Type L (B), drawn-temper tubing and wrought-copper fittings with brazed joints.

3.2 VALVE AND SPECIALTY APPLICATIONS

A. Install safety relief valves where required by ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
- B. Install refrigerant piping according to ASHRAE 15.
- Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping adjacent to machines to allow service and maintenance.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
- K. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.
- L. Slope refrigerant piping as follows:
 - 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 - 2. Install horizontal suction lines with a uniform slope downward to compressor.
 - 3. Install traps and double risers to entrain oil in vertical runs.
 - 4. Liquid lines may be installed level.
- M. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.
- N. Before installation of steel refrigerant piping, clean pipe and fittings using the following procedures:
 - 1. Shot blast the interior of piping.
 - 2. Remove coarse particles of dirt and dust by drawing a clean, lintless cloth through tubing by means of a wire or electrician's tape.
 - 3. Draw a clean, lintless cloth saturated with trichloroethylene through the tube or pipe. Continue this procedure until cloth is not discolored by dirt.
 - 4. Draw a clean, lintless cloth, saturated with compressor oil, squeezed dry, through the tube or pipe to remove remaining lint. Inspect tube or pipe visually for remaining dirt and lint.
 - 5. Finally, draw a clean, dry, lintless cloth through the tube or pipe.
 - 6. Safety-relief-valve discharge piping is not required to be cleaned but is required to be open to allow unrestricted flow.
- O. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.
- P. Identify refrigerant piping and valves according to Section 23 0553, IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT.
- Q. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 23 0517, SLEEVES AND SLEEVE SEALS FOR HVAC PIPING.

3.4 PIPE JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

- C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.
- D. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 - 1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
 - 2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.
- F. Threaded Joints: Thread steel pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry-seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Steel pipe can be threaded, but threaded joints must be seal brazed or seal welded.
- H. Welded Joints: Construct joints according to AWS D10.12/D10.12M.
- I. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.5 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor products are specified in Section 23 0529, HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT.
- B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet (6 m) long.
 - 2. Roller hangers and spring hangers for individual horizontal runs 20 feet (6 m) or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet (6 m) or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1/2 (DN 15): Maximum span, 60 inches (1500 mm); minimum rod size, 1/4 inch (6.4 mm).
 - 2. NPS 5/8 (DN 18): Maximum span, 60 inches (1500 mm); minimum rod size, 1/4 inch (6.4 mm).
 - 3. NPS 1 (DN 25): Maximum span, 72 inches (1800 mm); minimum rod size, 1/4 inch (6.4 mm).
 - 4. NPS 1-1/4 (DN 32): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).
 - 5. NPS 1-1/2 (DN 40): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).
 - 6. NPS 2 (DN 50): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).
 - 7. NPS 2-1/2 (DN 65): Maximum span, 108 inches (2700 mm); minimum rod size, 3/8 inch (9.5 mm).
- D. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 2 (DN 50): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (9.5 mm).
 - 2. NPS 2-1/2 (DN 65): Maximum span, 11 feet (3.4 m); minimum rod size, 3/8 inch (9.5 mm).
- E. Support multifloor vertical runs at least at each floor.

3.6 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
- B. Tests and Inspections:
 - 1. Comply with ASME B31.5, Chapter VI.
 - 2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 - 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 - a. Fill system with nitrogen to the required test pressure.
 - b. System shall maintain test pressure at the manifold gage throughout duration of test.
 - c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 - d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.7 SYSTEM CHARGING

- A. Charge system using the following procedures:
 - 1. Install core in filter dryers after leak test but before evacuation.
 - 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers (67 Pa). If vacuum holds for 12 hours, system is ready for charging.
 - 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig (14 kPa).
 - 4. Charge system with a new filter-dryer core in charging line.

3.8 ADJUSTING

- A. Adjust set-point temperature of air-conditioning controllers to the system design temperature.
- B. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 - 1. Open shutoff valves in condenser water circuit.
 - 2. Verify that compressor oil level is correct.
 - 3. Open compressor suction and discharge valves.
 - 4. Open refrigerant valves except bypass valves that are used for other purposes.
 - 5. Check open compressor-motor alignment and verify lubrication for motors and bearings.

END OF SECTION 23 2300

SECTION 23 8126 - SPLIT-SYSTEM AIR-CONDITIONERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes split-system air-conditioning and heat-pump units consisting of separate evaporator-fan and compressor-condenser components.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Wiring Diagrams: For power, signal, and control wiring.
- C. Field quality-control reports.
- D. Operation and Maintenance Data: For split-system air-conditioning units to include in emergency, operation, and maintenance manuals.
- E. Warranty: Sample of special warranty.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE Compliance:
 - 1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."
 - 2. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 4 "Outdoor Air Quality," Section 5 "Systems and Equipment," Section 6 " Procedures," and Section 7 "Construction and System Start-Up."
- C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2004.

1.5 COORDINATION

A. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

1.6 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period:
 - a. For Compressor: One year from date of Substantial Completion.
 - b. For Parts: One year from date of Substantial Completion.
 - c. For Labor: One year from date of Substantial Completion.

1.7 EXTRA MATERIALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filters: One set for each air-handling unit.
 - 2. Gaskets: One set for each access door.
 - 3. Fan Belts: One set for each air-handling unit fan.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Carrier Corporation; Home Comfort and HVAC Building & Industrial Systems.
 - 2. Coleman Company Inc. (The).
 - 3. First Operations LP.
 - 4. Friedrich Air Conditioning Company.
 - 5. Koldwave, Inc.; a Mestek company.
 - 6. Lennox International Inc.
 - 7. Mitsubishi Electric & Electronics USA, Inc.; HVAC Advanced Products Division.
 - 8. Mitsubishi Electric Sales Canada Inc.
 - 9. Mitsubishi Heavy Industries America, Inc.
 - 10. SANYO North America Corporation; SANYO Fisher Company.
 - 11. Trane; a business of American Standard companies.
 - 12. YORK; a Johnson Controls company.

2.2 INDOOR UNITS 5 TONS (18 kW) OR LESS

- A. Wall-Mounted, Evaporator-Fan Components:
 - 1. Cabinet: Enameled steel with removable panels on front and ends in color selected by Architect, and discharge drain pans with drain connection.
 - 2. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and thermal-expansion valve. Comply with ARI 210/240.
 - 3. Fan: Direct drive, centrifugal.
 - 4. Fan Motors:
 - a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Section 23 0513, COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT.
 - b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 - c. Enclosure Type: Totally enclosed, fan cooled.
 - d. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
 - e. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.
 - f. Mount unit-mounted disconnect switches on interior of unit.
 - 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

- 6. Condensate Drain Pans:
 - a. Fabricated with one or two percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and humidifiers, and to direct water toward drain connection.
 - 1) Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1-2004.
 - 2) Depth: A minimum of 1 inch (25 mm) deep.
 - b. Single-wall, stainless-steel sheet.
 - c. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.
 - 1) Minimum Connection Size: NPS 1 (DN 25).
 - d. Pan-Top Surface Coating: Asphaltic waterproofing compound.
- 7. Integral Condensate Pump:
 - a. Provide integral condensate pump as noted on Plans.
 - b. Minimum discharge head of integral condensate pump shall be 20 feet of head.
- 8. Air Filtration Section:
 - a. General Requirements for Air Filtration Section:
 - 1) Comply with NFPA 90A.
 - 2) Minimum Arrestance: According to ASHRAE 52.1 and MERV 7.
 - 3) Filter-Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lifted out from access plenum.
- 9. Thermostat:
 - a. Provide a hardwire thermostat, and locate as shown on Plans.
 - b. Thermostat shall have the following functions:
 - 1) Mode of operation.
 - 2) Room temperature.
 - 3) Thermostat setpoint temperature.
 - 4) Fan operation cycle/continuous.
 - 5) Clock.
 - 6) Independent cool/heat setback setpoints.
 - 7) Automatic change over to cool/heart.

2.3 OUTDOOR UNITS (5 TONS (18 kW) OR LESS)

- A. Air-Cooled, Compressor-Condenser, and Air Cooled Variable Refrigerant Compressor-Condenser Components:
 - 1. Casing: Steel, finished with baked enamel in color selected by Architect, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
 - 2. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation device. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 - a. Compressor Type: Scroll.
 - b. Two-speed compressor motor with manual-reset high-pressure switch and automatic-reset low-pressure switch.
 - c. Refrigerant Charge: R-410A.
 - d. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and liquid subcooler. Comply with ARI 210/240.
 - 3. Heat-Pump Components: Reversing valve and low-temperature-air cutoff thermostat.
 - 4. Fan: Aluminum-propeller type, directly connected to motor.
 - 5. Motor: Permanently lubricated, with integral thermal-overload protection.
 - 6. Low Ambient Kit: Permits operation down to 0 deg F for variable refrigerant system and 24 deg F for the single zone refrigerant system.
 - 7. Mounting Base: Polyethylene.

2.4 ACCESSORIES

- A. Control equipment and sequence of operation are specified in Section 23 0900, INSTRUMENTATION AND CONTROL FOR HVAC, and Section 23 0993, SEQUENCE OF OPERATIONS FOR HVAC CONTROLS.
- B. Thermostat: Low voltage with subbase to control compressor and evaporator fan.
- C. Automatic-reset timer to prevent rapid cycling of compressor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install units level and plumb.
- B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.
- C. Install ground-mounted, compressor-condenser components on polyethylene mounting base.
- D. Install roof-mounted, compressor-condenser components on equipment supports specified in Section 07 7200, ROOF ACCESSORIES. Anchor units to supports with removable, cadmium-plated fasteners.
- E. Install and connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.

3.2 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- C. Tests and Inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Remove and replace malfunctioning units and retest as specified above.
- E. Prepare test and inspection reports.

3.3 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

3.4 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION 23 8126

SECTION 23 8213 - VALANCE HEATING AND COOLING UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Hydronic heating and cooling panels.

1.3 DEFINITIONS

A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling and power-limited circuits

1.4 SUBMITTALS

- A. Product Data: Include rated capacities, specialties, and accessories for each product indicated.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work. Detail equipment assemblies and suspension and attachment. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- C. Operation and Maintenance Data: For radiant heaters and panels to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.6 COORDINATION

A. Coordinate layout and installation of radiant heaters and panels and suspension system components with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

PART 2 - PRODUCTS

2.1 HYDRONIC HEATING PANELS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. AIRTEX Radiant Systems; a division of Engineered Air Ltd.
 - 2. Rosemex Products.
 - 3. Sun-El Corporation.
 - 4. Twa Panel Systems Inc.

- B. Description: Linear sheet metal panel with serpentine water piping, suitable for lay-in installation flush with T-bar ceiling grid.
 - 1. Panels: Minimum 0.0336-inch- (0.86-mm-) thick, galvanized-steel sheet.
 - 2. Backing Insulation: Minimum 1-inch- (25-mm-) thick, mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB with factory-applied jacket.
 - 3. Exposed-Side Panel Finish: Baked-enamel finish in manufacturer's standard paint color as selected by Architect.
 - 4. Factory Piping: ASTM B 88, Type L (ASTM B 88M, Type B) copper tube with ASME B16.22 wrought-copper fittings and brazed joints. Piping shall be mechanically bonded to panel.
 - 5. Surface-Mounting Trim: Sheet metal with baked-enamel finish in manufacturer's standard paint color as selected by Architect.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive radiant heating and cooling units for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in for hydronic piping connections to verify actual locations before radiant heating and cooling unit installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install radiant heating and cooling units level and plumb.
- B. Suspend radiant heaters from structure.
- C. Support for Radiant Heating and Cooling Panels in or on Grid-Type Suspended Ceilings: Use grid as a support element.
 - 1. Install a minimum of four ceiling support system rods or wires for each panel. Locate not more than 6 inches (150 mm) from panel corners.
 - 2. Support Clips: Fasten to panel and to ceiling grid members at or near each panel corner with clips designed for the application.
 - 3. Panels of Sizes Less Than Ceiling Grid: Install as indicated on reflected ceiling plans or center in acoustical panel, and support panels independently with at least two 3/4-inch (19-mm) metal channels spanning and secured to ceiling tees.
 - 4. Install at least one independent support rod or wire from structure to a tab on panel. Wire or rod shall have breaking strength of the weight of panel at a safety factor of 3.
- D. Verify locations of thermostats with Drawings and room details before installation. Install devices 48 inches (1220 mm) above finished floor.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in Section 23 2113, HYDRONIC PIPING. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Unless otherwise indicated, install shutoff valve and union or flange at each connection.
- C. Install piping adjacent to unit to allow service and maintenance.

3.4 FIELD QUALITY CONTROL

- A. Testing: Perform the following field tests and inspections and prepare test reports:
 - 1. Operate electric heating elements through each stage to verify proper operation and electrical connections.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and units.
- B. Remove and replace malfunctioning units and retest as specified above.
- C. After installing panels, inspect unit cabinet for damage to finish. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain radiant heaters and panels. Refer to Section 01 7900, DEMONSTRATION AND TRAINING.

END OF SECTION 23 8213

SECTION 23 8233 - CONVECTORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Hydronic finned-tube radiators.

1.3 SUBMITTALS

- A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for each type of product indicated.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Location and size of each field connection.
 - 2. Location and arrangement of piping valves and specialties.
 - 3. Location and arrangement of integral controls.
 - 4. Enclosure joints, corner pieces, access doors, and other accessories.
- C. Operation and Maintenance Data: For convection heating units to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 HOT-WATER OR STEAM FINNED-TUBE RADIATORS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. Embassy Industries, Inc.
 - 2. Engineered Air.
 - 3. Rittling, a div. of Hydro-Air Components.
 - 4. Rosemex.
 - 5. Slant/Fin.
 - 6. Trane.
 - 7. Sterling Commercial Hydronic Products.
- B. Performance Ratings: Rate finned-tube radiators according to Hydronics Institute's "I=B=R Testing and Rating Standard for Finned-Tube (Commercial) Radiation."
- C. Heating Elements: Copper tubing mechanically expanded into flanged collars of evenly spaced aluminum fins resting on element supports. One tube end shall be belled.
 - 1. Tube Diameter: NPS 3/4 (DN 20).
 - 2. Fin Size: 3 by 3 inches (76 by 76 mm).
 - 3. Fin Spacing: 40 per foot (131 per meter).
 - 4. Number of Tiers: One.
 - 5. Heat Output: 900 Btu/h/ft.
 - 6. Entering Air Temperature: 65 deg F (18 deg C).

- 7. Average Water Temperature: 175 deg F.
- 8. Minimum Water Velocity: 1 fps.
- D. Element Supports: Ball-bearing cradle type to permit longitudinal movement on enclosure brackets.
- E. Front Panel: Minimum 0.0747-inch-thick steel.
- F. Floor-Mounting Pedestals: Conceal insulated piping at maximum 36-inch (914-mm) spacing. Pedestal-mounting back panel shall be solid panel matching front panel. Provide stainless-steel escutcheon for floor openings at pedestals.
- G. Finish: Baked-enamel finish in manufacturer's standard color as selected by Architect.
- H. Access Doors: Factory made, permanently hinged with tamper-resistant fastener, minimum size 6 by 7 inches (150 by 175 mm), integral with enclosure.
- I. Enclosure Style: Flat top.
- J. Accessories: Thermostatic control valve, corners, relay sections, and splice plates all matching the enclosure and grille finishes.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive convection heating units for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in for hydronic-piping connections to verify actual locations before convection heating unit installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FINNED-TUBE RADIATOR INSTALLATION

- A. Install units level and plumb.
- B. Join sections with splice plates and filler pieces to provide continuous enclosure.
- C. Install access doors for access to valves.
- D. Install enclosure continuously from wall to wall.
- E. Terminate enclosures with manufacturer's end caps, except where enclosures are indicated to extend to adjoining walls.
- F. Install valves within reach of access door provided in enclosure.
- G. Install air-seal gasket between wall and recessing flanges or front cover of fully recessed unit.
- H. Install piping within pedestals for freestanding units.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in Section 23 2113, HYDRONIC PIPING. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect hot-water units and components to piping according to Section 23 2113, HYDRONIC PIPING.
 - 1. Install shutoff valves on inlet and outlet, and balancing valve on outlet.
- C. Install thermostatic control valve.
- D. Install piping adjacent to convection heating units to allow service and maintenance.

3.4 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper convection heating unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

END OF SECTION 23 8233

SECTION 23 8239 - UNIT HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cabinet unit heaters with centrifugal fans and hot-water coils.

1.3 DEFINITIONS

- A. BAS: Building automation system.
- B. CWP: Cold working pressure.
- C. PTFE: Polytetrafluoroethylene plastic.
- D. TFE: Tetrafluoroethylene plastic.

1.4 SUBMITTALS

- A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for each product indicated.
- B. LEED Submittal:
 - 1. Product Data for Prerequisite EQ 1: Documentation indicating that units comply with ASHRAE 62.1-2004, Section 5 "Systems and Equipment."
- C. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Location and size of each field connection.
 - 2. Equipment schedules to include rated capacities, operating characteristics, furnished specialties, and accessories.
 - 3. Location and arrangement of piping valves and specialties.
 - 4. Location and arrangement of integral controls.
 - 5. Wiring Diagrams: Power, signal, and control wiring.
- D. Operation and Maintenance Data: For cabinet unit heaters to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."

C. ASHRAE/IESNA 90.1-2004 Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2004, Section 6 - "Heating, Ventilating, and Air-Conditioning."

1.6 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Cabinet Unit Heater Filters: Furnish one spare filter for each filter installed.

PART 2 - PRODUCTS

2.1 CABINET UNIT HEATERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. Airtherm; a Mestek Company.
 - 2. Berko Electric Heating; a division of Marley Engineered Products.
 - 3. Carrier Corporation.
 - 4. Chromalox, Inc.; a division of Emerson Electric Company.
 - 5. Dunham-Bush, Inc.
 - 6. Engineered Air Ltd.
 - 7. Indeeco.
 - 8. International Environmental Corporation.
 - 9. Markel Products; a division of TPI Corporation.
 - 10. Marley Electric Heating; a division of Marley Engineered Products.
 - 11. McQuay International.
 - 12. Ouellet Canada Inc.
 - 13. QMark Electric Heating; a division of Marley Engineered Products.
 - 14. Rosemex Products.
 - 15. Trane.
 - 16. USA Coil & Air.
- B. Description: A factory-assembled and -tested unit complying with ARI 440.
 - 1. Comply with UL 2021.
- C. Coil Section Insulation: ASTM C 1071; surfaces exposed to airstream shall be erosion-resistant coating to prevent erosion of glass fibers.
 - 1. Thickness: 1/2 inch (13 mm).
 - 2. Thermal Conductivity (k-Value): 0.26 Btu x in./h x sq. ft. at 75 deg F (0.037 W/m x K at 24 deg C) mean temperature.
 - 3. Fire-Hazard Classification: Maximum flame-spread index of 25 and smoke-developed index of 50 when tested according to ASTM E 84.
 - 4. Adhesive: Comply with ASTM C 916 and with NFPA 90A or NFPA 90B.
 - 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.
- D. Cabinet: Steel with baked-enamel finish with manufacturer's standard paint, in color selected by Architect.
 - 1. Horizontal Unit, Exposed Bottom Panels: Minimum 0.0677-inch- (1.7-mm-) thick, sheet steel, removable panels secured with tamperproof cam fasteners and safety chain.
 - 2. Recessing Flanges: Steel, finished to match cabinet.
 - 3. Control Access Door: Key operated.
- E. Filters: Minimum arrestance according to ASHRAE 52.1 and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.

- 1. Pleated: 90 percent arrestance and 7 MERV.
- F. Hot-Water Coil: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch (2.5 mm) and rated for a minimum working pressure of 200 psig (1378 kPa) and a maximum enteringwater temperature of 220 deg F (104 deg C). Include manual air vent and drain.
- G. Fan and Motor Board: Removable.
 - 1. Fan: Forward curved, double width, centrifugal; directly connected to motor. Thermoplastic or painted-steel wheels, and aluminum, painted-steel, or galvanized-steel fan scrolls.
 - 2. Motor: Permanently lubricated, multispeed; resiliently mounted on motor board. Comply with requirements in Section 23 0513, COMMON MOTOR REQUIREMENTS FOR HVAC EOUIPMENT.
 - 3. Wiring Terminations: Connect motor to chassis wiring with plug connection.
- H. Factory, Hot-Water Piping Package: ASTM B 88, Type L (ASTM B 88M, Type B) copper tube with wrought-copper fittings and brazed joints. Label piping to indicate service, inlet and outlet.
 - 1. Two-way, modulating control valve.
 - 2. Two-Piece, Ball Valves: Bronze body with full-port, chrome-plated bronze ball; PTFE or TFE seats; and 600-psig (4140-kPa) minimum CWP rating and blowout-proof stem.
 - 3. Automatic Flow-Control Valve: Brass or ferrous-metal body, 300-psig (2068-kPa) working pressure at 250 deg F (121 deg C), with removable, corrosion-resistant, tamperproof, self-cleaning, piston-spring; factory set to maintain constant indicated flow with plus or minus 10 percent over differential pressure range of 2 to 80 psig (13.8 to 552 kPa).
 - 4. Y-Pattern, Hot-Water Strainers: Cast-iron body (ASTM A 126, Class B); 125-psig (860-kPa) minimum working pressure; with threaded connections, bolted cover, perforated stainless-steel basket, and bottom drain connection. Include minimum NPS 1/2 (DN 15) threaded pipe and full-port ball valve in strainer drain connection.
 - 5. Wrought-Copper Unions: ASME B16.22.
- I. Basic Unit Controls:
 - 1. Control voltage transformer.
 - 2. Unit-mounted thermostat with the following features.
 - a. Heat-off switch.
 - b. Fan on-auto switch.
 - c. Manual fan speed switch.
 - d. Adjustable deadband.
 - e. Exposed set point.
 - f. Exposed indication.
 - g. Deg F indication.
 - 3. Unit-mounted temperature sensor.
- J. Electrical Connection: Factory wire motors and controls for a single field connection.
- K. Sequence of Operation:
 - 1. On a call from heat from the unit-mounted thermostat, the fan shall start and the heating control valve modulate open to satisfy the thermostat.
 - 2. When the thermostat is satisfied the fan shall secure and the heating control valve shall shut.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas to receive unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance.

- B. Examine roughing-in for piping and electrical connections to verify actual locations before unit heater installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install wall boxes in finished wall assembly; seal and weatherproof. Joint-sealant materials and applications are specified in Section 07 9200, JOINT SEALANTS.
- B. Install cabinet unit heaters to comply with NFPA 90A.
- C. Suspend cabinet unit heaters from structure with elastomeric hangers.
- D. Install new filters in each fan-coil unit within two weeks of Substantial Completion.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to machine to allow service and maintenance.
- C. Connect piping to cabinet unit heater's factory, hot-water piping package. Install the piping package if shipped loose.
- D. Comply with safety requirements in UL 1995.
- E. Unless otherwise indicated, install union and gate or ball valve on supply-water connection and union and calibrated balancing valve on return-water connection of unit heater. Hydronic specialties are specified in Section 23 2113, HYDRONIC PIPING.
- F. Ground equipment according to local codes.
- G. Connect wiring according to local codes.

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections. Report results in writing.
- B. Perform the following field tests and inspections and prepare test reports:
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 2. Operate electric heating elements through each stage to verify proper operation and electrical connections.
 - 3. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
- C. Remove and replace malfunctioning units and retest as specified above.

3.5 ADJUSTING

A. Adjust initial temperature set points.

B. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain cabinet unit heaters. Refer to Section01 7900, DEMONSTRATION AND TRAINING.

END OF SECTION 23 8239

SECTION 31 2000 - EARTH MOVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Preparing subgrades for slabs-on-grade, walks, turf and grasses and plants. Owner will provide sod over disturbed areas outside of building.
- 2. Excavating and backfilling for buildings and structures.
- 3. Drainage course for concrete slabs-on-grade.
- 4. Subbase course for concrete walks.
- 5. Subsurface drainage backfill for walls and trenches.
- 6. Excavating and backfilling trenches for utilities and pits for buried utility structures.

B. Related Sections:

- 1. Section 01 3200, CONSTRUCTION PROGRESS DOCUMENTATION, for recording preexcavation and earth moving progress.
- 2. Section 01 5000, TEMPORARY FACILITIES AND CONTROLS, for temporary controls, utilities, and support facilities; also for temporary site fencing if not in another Section.
- 3. Section 03 3000, CAST-IN-PLACE CONCRETE, for granular course if placed over vapor retarder and beneath the slab-on-grade.
- 4. Divisions 21, 22, 23, 26, 27, 28, and 33 Sections for installing underground mechanical and electrical utilities and buried mechanical and electrical structures.

1.3 DEFINITIONS

- A. Backfill: Soil material or controlled low-strength material used to fill an excavation.
 - 1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
 - 2. Final Backfill: Backfill placed over initial backfill to fill a trench.
- B. Base Course: Aggregate layer placed between the subbase course and hot-mix asphalt paving.
- C. Bedding Course: Aggregate layer placed over the excavated subgrade in a trench before laying pipe.
- D. Granular Base: Aggregate layer supporting the slab-on-grade that also minimizes upward capillary flow of pore water.
- E. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated.
 - 1. Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by Architect. Authorized additional excavation and replacement material will be paid for according to Contract provisions for changes in the Work.
 - 2. Bulk Excavation: Excavation more than 10 feet (3 m) in width and more than 30 feet (9 m) in length.
 - 3. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by Architect. Unauthorized excavation, as well as remedial work directed by Architect, shall be without additional compensation.

- F. Fill: Soil materials used to raise existing grades.
- G. Drainage Fill: Aggregate layer placed behind retaining walls.
- H. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.
- I. Subbase Course: Aggregate layer placed between the subgrade and base course for hot-mix asphalt pavement, or aggregate layer placed between the subgrade and a cement concrete pavement or a cement concrete or hot-mix asphalt walk.
- J. Subgrade: Uppermost surface of an excavation or the top surface of a fill or backfill immediately below subbase, drainage fill, drainage course, or topsoil materials.
- K. Utilities: On-site underground pipes, conduits, ducts, and cables, as well as underground services within buildings.

1.4 SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Material Test Reports: For each on-site soil material proposed for fill and backfill as follows:
 - 1. Classification according to ASTM D 2487.
 - 2. Laboratory compaction curve according to ASTM D 698
- C. Field Quality-Control Reports: Include all observed conditions and recommendations concerning excavation, backfill and foundation inspections.

1.5 QUALITY ASSURANCE

- A. Geotechnical Testing Agency Qualifications: Qualified according to ASTM E 329 and ASTM D 3740 for testing indicated.
- B. Geotechnical Engineer. A registered professional engineer qualified to inspect subgrade materials and make recommendations pertaining to foundation bearing and engineered fill.

1.6 PROJECT CONDITIONS

- A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during earth moving operations.
 - 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
 - 2. Provide alternate routes around closed or obstructed traffic ways if required by Owner or authorities having jurisdiction.
- B. Utility Locator Service: Notify "Call Before You Dig"for area where Project is located before beginning earth moving operations.
- C. Do not commence earth moving operations until temporary erosion- and sedimentation-control measures, specified in Section 01 5000, TEMPORARY FACILITIES AND CONTROLS, are in place.
- D. Do not commence earth moving operations until plant-protection measures specified in Section 01 5639, TEMPORARY TREE AND PLANT PROTECTION, are in place.

- E. The following practices are prohibited within protection zones:
 - 1. Storage of construction materials, debris, or excavated material.
 - 2. Parking vehicles or equipment.
 - 3. Foot traffic.
 - 4. Erection of sheds or structures.
 - 5. Impoundment of water.
 - 6. Excavation or other digging unless otherwise indicated.
 - 7. Attachment of signs to or wrapping materials around trees or plants unless otherwise indicated.
- F. Do not direct vehicle or equipment exhaust towards protection zones.
- G. Prohibit heat sources, flames, ignition sources, and smoking within or near protection zones.
- H. Soil borings for excavation and backfill guidelines and foundation and pavement design have been completed at the site. The final geotechnical report is provided after specification section 003132.0-GEOTECHNICAL DATA for the contractor's information. Ground water levels observed at the time of the borings are noted on the boring logs.

PART 2 - PRODUCTS

2.1 SOIL MATERIALS

- A. Satisfactory Soils: Soil Classification Groups GW, GP, SW, SP, and CL according to ASTM D 2487, or a combination of these groups; free of rock or gravel larger than 1 inches (25 mm)] in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter.
 - 1. Liquid Limit: less than or equal to 45.
 - 2. Plasticity Index: greater than or equal to 10 and less than or equal to 20.
- B. Unsatisfactory Soils: Soil Classification not listed above.
 - 1. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction.
- C. Engineered Fill: Shall consist of low plasticity cohesive soils or approved granular materials that are free of organic matter, debris, and contamination. Frozen material shall not be used. Fill shall not be placed on frozen subgrade. Each proposed fill material type shall be sampled and evaluated by the geotechnical engineer prior to its delivery and/or use.
- D. Bedding Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; except with 100 percent passing a 1-inch (25-mm) sieve and not more than 8 percent passing a No. 200 (0.075-mm) sieve.
- E. Granular Base: Material similar to NDOR Crushed Rock for Base Course, with 6% or less fines passing the #200 sieve.
- F. Drainage Fill: Well-graded, free-draining granular material. Gradation shall be 100% passing the 1-1/2 inch sieve, approximately 40% passing the No. 10 sieve, and less than 6% fines. NDOR 47B Fine Aggregate for Concrete or approved equal.
- G. Sand: ASTM C 33; fine aggregate.
- H. Impervious Fill: Clayey gravel and sand mixture capable of compacting to a dense state.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earth moving operations.
- B. Protect and maintain erosion and sedimentation controls during earth moving operations.
- C. Protect subgrades and foundation soils from freezing temperatures and frost. Remove temporary protection before placing subsequent materials.

3.2 DEWATERING

- A. Prevent surface water and ground water from entering excavations, from ponding on prepared subgrades, and from flooding Project site and surrounding area.
- B. Protect subgrades from softening, undermining, washout, and damage by rain or water accumulation.
 - 1. Reroute surface water runoff away from excavated areas. Do not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches.

3.3 EXCAVATION, GENERAL

- A. Unclassified Excavation: Excavate to subgrade elevations regardless of the character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions. No changes in the Contract Sum or the Contract Time will be authorized for rock excavation or removal of obstructions.
 - 1. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials.
- B. Classified Excavation: Excavate to subgrade elevations. Material to be excavated will be classified as earth and rock. Do not excavate rock until it has been classified and cross sectioned by Architect. The Contract Sum will be adjusted for rock excavation according to unit prices included in the Contract Documents. Changes in the Contract Time may be authorized for rock excavation.
 - 1. Earth excavation includes excavating pavements and obstructions visible on surface; underground structures, utilities, and other items indicated to be removed; together with soil, boulders, and other materials not classified as rock or unauthorized excavation.
 - a. Intermittent drilling, ram hammering, or ripping of material not classified as rock excavation is earth excavation.
- C. Stripping of existing sidewalks, pavements, vegetation, organic topsoil, and other materials unsuitable for re-use as engineered fill is recommended with all cut, fill and building areas. A typical stripping depth of about 6 to 9 inches is expected to be adequate in most areas. Areas of both deeper and shallower stripping may be encountered. The geotechnical engineer shall help evaluate actual stripping depths at the time of construction.
- D. Site stripping and building pad perparation shall extend to a distance of at least 5 feet beyond the new structure and foundation perimeters, where feasible. Alongside the existing building, excavations shall not undermine the existing foundations and floor slabs. Excavations shall not extend below bearing level of existing footings and foundations.

3.4 EXCAVATION FOR STRUCTURES

- A. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 1 inch (25 mm). If applicable, extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, and for inspections.
 - 1. Excavations for Footings and Foundations: Do not disturb bottom of excavation. Excavate by hand to final grade just before placing concrete reinforcement. Trim bottoms to required lines and grades to leave solid base to receive other work.
- B. Excavations at Edges of Tree- and Plant-Protection Zones:
 - 1. Excavate by hand to indicated lines, cross sections, elevations, and subgrades. Use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.
 - 2. Cut and protect roots according to requirements in Section 01 5639, TEMPORARY TREE AND PLANT PROTECTION.

3.5 EXCAVATION FOR WALKS AND PAVEMENTS

A. Excavate surfaces under walks and pavements to indicated lines, cross sections, elevations, and subgrades.

3.6 EXCAVATION FOR UTILITY TRENCHES

- A. Excavate trenches to indicated gradients, lines, depths, and elevations.
 - 1. Beyond building perimeter, excavate trenches to allow installation of top of pipe below frost line.
- B. Excavate trenches to uniform widths to provide the following clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to 12 inches (300 mm) higher than top of pipe or conduit unless otherwise indicated.
 - 1. Clearance: 12 inches (300 mm) each side of pipe or conduit.
- C. Trench Bottoms: Excavate and shape trench bottoms to provide uniform bearing and support of pipes and conduit. Shape subgrade to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits. Remove projecting stones and sharp objects along trench subgrade.
 - 1. For pipes and conduit less than 6 inches (150 mm) in nominal diameter, hand-excavate trench bottoms and support pipe and conduit on an undisturbed subgrade.
 - 2. For pipes and conduit 6 inches (150 mm) or larger in nominal diameter, shape bottom of trench to support bottom 90 degrees of pipe or conduit circumference. Fill depressions with tamped sand backfill.
 - 3. For flat-bottomed, multiple-duct conduit units, hand-excavate trench bottoms and support conduit on an undisturbed subgrade.
 - 4. Excavate trenches 6 inches (150 mm) deeper than elevation required in rock or other unyielding bearing material to allow for bedding course.

D. Trenches in Tree- and Plant-Protection Zones:

- 1. Hand-excavate to indicated lines, cross sections, elevations, and subgrades. Use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.
- 2. Do not cut main lateral roots or taproots; cut only smaller roots that interfere with installation of utilities
- 3. Cut and protect roots according to requirements in Section 01 5639, TEMPORARY TREE AND PLANT PROTECTION.

3.7 SUBGRADE INSPECTION

- A. Notify Architect when excavations have reached required subgrade.
- B. If geotechnical engineer determines that unsatisfactory soil is present, continue excavation and replace with compacted backfill or fill material as directed.
- C. Proof-roll subgrade below areas to receive fill. Proofrolling aids in providing a firm base for compaction of fill and of delineating soft or disturbed areas that may exist below subgrade level. Unsuitable areas observed at this time shall be improved by compaction or by undercutting and placement of suitable compacted fill. Proofrolling shall be done with a pneumatic-tired and fully-loaded tandem-axle dump truck weighing not less than 25 tons (26.7 tonnes), or other equipment providing an equivalent subgrade loading. Do not proof-roll wet or saturated subgrades.
 - 1. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph (5 km/h).
 - 2. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by geotechnical engineer, and replace with compacted backfill or fill as directed.
- D. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, as directed by geotechnical engineer, without additional compensation.

3.8 UNAUTHORIZED EXCAVATION

- A. Fill unauthorized excavation under foundations or wall footings by extending bottom elevation of concrete foundation or footing to excavation bottom, without altering top elevation. Lean concrete fill, with 28-day compressive strength of 2500 psi (17.2 MPa), may be used when approved by Architect.
 - 1. Fill unauthorized excavations under other construction, pipe, or conduit as directed by Architect.

3.9 STORAGE OF SOIL MATERIALS

- A. Stockpile borrow soil materials and excavated satisfactory soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.
 - 1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.10 BACKFILL

- A. Place and compact backfill in excavations promptly, but not before completing the following:
 - 1. Construction below finish grade including, where applicable, subdrainage, dampproofing, waterproofing, and perimeter insulation.
 - 2. Surveying locations of underground utilities for Record Documents.
 - 3. Testing and inspecting underground utilities.
 - 4. Removing concrete formwork.
 - 5. Removing trash and debris.
 - 6. Removing temporary shoring and bracing, and sheeting.
 - 7. Installing permanent or temporary horizontal bracing on horizontally supported walls.
- B. Place backfill on subgrades free of mud, frost, snow, or ice.

3.11 CONSTRUCTION ADJACENT TO EXISTING FOOTINGS

A. Care shall be taken to avoid undermining existing footings, foundations and grade-supported slabs. Performing test pits at the onset of construction is recommended to verify bearing levels and extents of existing footings and foundations.

B. No excavations shall extend below the bearing level of existing foundations within 5 feet of the existing footings and foundations. Beyond this distance, excavations shall slope down at an inclination of 2H:1V or flatter. Should excavations next to the existing footings and foundations extend more than 2 feet below bearing elevation, the geotechnical engineer shall be consulted regarding the requirements for sloping, shoring, bracing, or underpinning based on actual conditions encountered.

3.12 UTILITY TRENCH BACKFILL

- A. Place backfill on subgrades free of mud, frost, snow, or ice.
- B. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.
- C. Trenches under Footings: Backfill trenches excavated under footings and within 18 inches (450 mm) of bottom of footings with cohesive fill; fill with concrete to elevation of bottom of footings. Concrete is specified in Section 03 3000, CAST-IN-PLACE CONCRETE
- D. Backfill voids with satisfactory soil while removing shoring and bracing.
- E. If utility trenches are backfilled with relatively clean granular material, they should be capped with pavement or at least 18 inches (450 mm) of cohesive soil to reduce the infiltration and conveyance of surface water through the trench backfill.
- F. Place and compact initial backfill of subbase material, free of particles larger than 1 inch (25 mm) in any dimension, to a height of 12 inches (300 mm) over the pipe or conduit.
 - 1. Carefully compact initial backfill under pipe haunches and compact evenly up on both sides and along the full length of piping or conduit to avoid damage or displacement of piping or conduit. Coordinate backfilling with utilities testing.
- G. Place and compact final backfill of satisfactory soil to final subgrade elevation.
- H. All utility trenches shall be plugged with a clay core at locations where they enter under the new building to prevent the utility trench from being a route for water to migrate into the building envelope.

3.13 SOIL FILL

- A. Plow, scarify, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing material.
- B. Place and compact fill material in layers to required elevations as follows:
 - 1. Under grass and planted areas, use satisfactory soil material.
 - 2. Under walks and pavements, use satisfactory soil material.
 - 3. Under steps and ramps, use engineered fill.
 - 4. Under building slabs, use engineered fill.
 - 5. Under footings and foundations, use engineered fill.
- C. Place soil fill on subgrades free of mud, frost, snow, or ice.

3.14 SOIL MOISTURE CONTROL

- A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 2 percent of optimum moisture content.
 - 1. Do not place backfill or fill soil material on surfaces that are muddy, frozen, or contain frost or ice.

2. Remove and replace, or scarify and air dry, otherwise satisfactory soil material that exceeds optimum moisture content by 2 percent and is too wet to compact to specified dry unit weight.

3.15 COMPACTION OF SOIL BACKFILLS AND FILLS

- A. Place backfill and fill soil materials in layers not more than 8 inches (200 mm) in loose depth for material compacted by heavy compaction equipment, and not more than 4 inches (100 mm) in loose depth for material compacted by hand-operated tampers.
- B. Place backfill and fill soil materials evenly on all sides of structures to required elevations, and uniformly along the full length of each structure.
- C. Compact soil materials to not less than the following percentages of maximum dry unit weight according to ASTM D 698:
 - 1. Under structures, building slabs, steps, and pavements, scarify and recompact top 12 inches (300 mm) of existing subgrade and each layer of backfill or fill soil material at 95 percent.
 - 2. Under walkways, scarify and recompact top 6 inches (150 mm) below subgrade and compact each layer of backfill or fill soil material at 92 percent.
 - 3. Under turf or unpaved areas, scarify and recompact top 6 inches (150 mm) below subgrade and compact each layer of backfill or fill soil material at 85 percent.
 - 4. For utility trenches, compact each layer of initial and final backfill soil material at 85 percent.
- D. Thinner lifts may be required in confined areas or within excavations or when hand-operated compaction equipment is used.
- E. Engineered fill shall be tested for moisture content and compaction during placement. Should the results of the in-place density tests indicate that the specified moisture or compaction limits have not been met, the area represented by the test shall be reworked and retested as required until the specified moisture and compaction requirements are achieved.
- F. Moisture levels shall be maintained low enough to allow for satisfactory compaction to be achieved without the cohesionless fill material pumping when proofrolled or containing excess water (ponding).

3.16 GRADING

- A. General: Uniformly grade areas to a smooth surface, free of irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.
 - 1. Provide a smooth transition between adjacent existing grades and new grades.
 - 2. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.
- B. Site Rough Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to required elevations within the following tolerances:
 - 1. Turf or Unpaved Areas: Plus or minus 1 inch (25 mm).
 - 2. Walks: Plus or minus 1 inch (25 mm).
 - 3. Pavements: Plus or minus 1/2 inch (13 mm).
- C. Grading inside Building Lines: Finish subgrade to a tolerance of 1/2 inch (13 mm) when tested with a 10-foot (3-m) straightedge.
- D. Geotechnical Engineer. (Owner will engage Geotechnical Engineer) (Contractor will engage geotechnical engineer satisfactory to Owner) to perform field inspections of excavation and backfill operations.

3.17 SUBBASE AND BASE COURSES UNDER PAVEMENTS AND WALKS

- A. Place subbase course and base course on subgrades free of mud, frost, snow, or ice.
- B. On prepared subgrade, place subbase course and base course under pavements and walks as follows:
 - 1. Install separation geotextile on prepared subgrade according to manufacturer's written instructions, overlapping sides and ends.
 - 2. Place base course material over subbase course under hot-mix asphalt pavement.
 - 3. Shape subbase course and base course to required crown elevations and cross-slope grades.
 - 4. Place subbase course and base course 6 inches (150 mm) or less in compacted thickness in a single layer.
 - 5. Place subbase course and base course that exceeds 6 inches (150 mm) in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches (150 mm) thick or less than 3 inches (75 mm) thick.
 - 6. Compact subbase course and base course at optimum moisture content to required grades, lines, cross sections, and thickness to not less than 95 percent of maximum dry unit weight according to ASTM D 698.

3.18 DRAINAGE COURSE UNDER CONCRETE SLABS-ON-GRADE

- A. Place drainage course on subgrades free of mud, frost, snow, or ice.
- B. On prepared subgrade, place and compact drainage course under cast-in-place concrete slabs-on-grade as follows:
 - 1. Install subdrainage geotextile on prepared subgrade according to manufacturer's written instructions, overlapping sides and ends.
 - 2. Place drainage course 6 inches (150 mm) or less in compacted thickness in a single layer.
 - 3. Place drainage course that exceeds 6 inches (150 mm) in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches (150 mm) thick or less than 3 inches (75 mm) thick.
 - 4. Compact each layer of drainage course to required cross sections and thicknesses to not less than 95 percent of maximum dry unit weight according to ASTM D 698.

3.19 FIELD QUALITY CONTROL

- A. Geotechnical Engineer. Contractor will engage Geotechnical Engineer satisfactory to Owner to perform field inspections of excavation and backfill operations.
- B. Special Inspections: Owner will engage a qualified special inspector to perform the following special inspections:
 - 1. Determine prior to placement of fill that site has been prepared in compliance with requirements.
 - 2. Determine that fill material and maximum lift thickness comply with requirements.
 - 3. Determine, at the required frequency, that in-place density of compacted fill complies with requirements.
- C. Testing Agency: Owner will engage a qualified geotechnical engineering testing agency and Geotechnical Engineer to perform tests and inspections.
- D. Allow testing agency and geotechnical engineer to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earth moving only after test results for previously completed work comply with requirements.
- E. Footing Subgrade: At footing subgrades, at least one test of each soil stratum will be performed to verify design bearing capacities. Subsequent verification and approval of other footing subgrades may be based on a visual comparison of subgrade with tested subgrade when approved by Architect.

- F. Testing agency will test compaction of soils in place according to ASTM D 1556, ASTM D 2167, ASTM D 2922, and ASTM D 2937, as applicable. Tests will be performed at the following locations and frequencies:
 - 1. Paved and Building Slab Areas: At subgrade and at each compacted fill and backfill layer, at least one test for every 2000 sq. ft. (186 sq. m) or less of paved area or building slab, but in no case fewer than three tests.
 - 2. Foundation Wall Backfill: At each compacted backfill layer, at least one test for every 100 feet (30 m) or less of wall length, but no fewer than two tests.
 - 3. Trench Backfill: At each compacted initial and final backfill layer, at least one test for every 150 feet (46 m) or less of trench length, but no fewer than two tests.
- G. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil materials to depth required; recompact and retest until specified compaction is obtained.

3.20 PROTECTION

- A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.
- B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.
 - 1. Scarify or remove and replace soil material to depth as directed by Architect; reshape and recompact.
- C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.
 - 1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

3.21 DISPOSAL OF SURPLUS AND WASTE MATERIALS

- A. Remove surplus satisfactory soil and waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.
- B. Transport surplus satisfactory soil to designated storage areas on Owner's property. Stockpile or spread soil as directed by Architect.
 - 1. Remove waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.

END OF SECTION 31 2000

SECTION 32 1313 - CONCRETE PAVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Walks.
- B. Related Sections:
 - 1. Section 03 3000, CAST-IN-PLACE CONCRETE, for general building applications of concrete.
- C. Cementitious Materials: Portland cement alone or in combination with one or more of blended hydraulic cement, fly ash and other pozzolans, and ground granulated blast-furnace slag.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 QUALITY ASSURANCE

- A. Ready-Mix-Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.
 - 1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities" (Quality Control Manual Section 3, "Plant Certification Checklist").
- B. ACI Publications: Comply with ACI 301 (ACI 301M) unless otherwise indicated.

1

- C. Preinstallation Conference: Conduct conference at Project site
 - 1. Review methods and procedures related to concrete paving, including but not limited to, the following:
 - a. Concrete mixture design.
 - o. Quality control of concrete materials and concrete paving construction practices.
 - 2. Require representatives of each entity directly concerned with concrete paving to attend, including the following:
 - a. Contractor's superintendent.
 - b. Ready-mix concrete manufacturer.
 - c. Concrete paving subcontractor.

1.5 PROJECT CONDITIONS

A. Traffic Control: Maintain access for vehicular and pedestrian traffic as required for other construction activities.

PART 2 - PRODUCTS

2.1 FORMS

- A. Form Materials: Plywood, metal, metal-framed plywood, or other approved panel-type materials to provide full-depth, continuous, straight, and smooth exposed surfaces.
 - 1. Use flexible or uniformly curved forms for curves with a radius of 100 feet (30.5 m) or less. Do not use notched and bent forms.
- B. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and that will not impair subsequent treatments of concrete surfaces.

2.2 STEEL REINFORCEMENT

- A. Plain-Steel Welded Wire Reinforcement: ASTM A 185/A 185M, fabricated from galvanized-steel wire into flat sheets.
- B. Deformed-Steel Welded Wire Reinforcement: ASTM A 497/A 497M, flat sheet.
- C. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420); deformed.
- D. Steel Bar Mats: ASTM A 184/A 184M; with ASTM A 615/A 615M, Grade 60 (Grade 420), deformed bars; assembled with clips.
- E. Plain-Steel Wire: ASTM A 82/A 82M, galvanized.
- F. Deformed-Steel Wire: ASTM A 496/A 496M.
- G. Joint Dowel Bars: ASTM A 615/A 615M, Grade 60 (Grade 420) plain-steel bars; zinc coated (galvanized) after fabrication according to ASTM A 767/A 767M, Class I coating. Cut bars true to length with ends square and free of burrs.
- H. Tie Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), deformed.
- I. Hook Bolts: ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6), internally and externally threaded. Design hook-bolt joint assembly to hold coupling against paving form and in position during concreting operations, and to permit removal without damage to concrete or hook bolt.
- J. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars, welded wire reinforcement, and dowels in place. Manufacture bar supports according to CRSI's "Manual of Standard Practice" from steel wire, plastic, or precast concrete of greater compressive strength than concrete specified, and as follows:
 - 1. Equip wire bar supports with sand plates or horizontal runners where base material will not support chair legs.
 - 2. For epoxy-coated reinforcement, use epoxy-coated or other dielectric-polymer-coated wire bar supports.
- K. Zinc Repair Material: ASTM A 780.

2.3 CONCRETE MATERIALS

A. Cementitious Material: Use the following cementitious materials, of same type, brand, and source throughout Project:

- B. Normal-Weight Aggregates: ASTM C 33, uniformly graded. Provide aggregates from a single source
 - 1. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.
- C. Water: Potable and complying with ASTM C 94/C 94M.
- D. Air-Entraining Admixture: ASTM C 260.
- E. Chemical Admixtures: Admixtures certified by manufacturer to be compatible with other admixtures and to contain not more than 0.1 percent water-soluble chloride ions by mass of cementitious material.
 - 1. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
 - 2. Retarding Admixture: ASTM C 494/C 494M, Type B.
 - 3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
 - 4. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
 - 5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
 - 6. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.

2.4 CURING MATERIALS

- A. Absorptive Cover: AASHTO M 182, Class 3, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. (305 g/sq. m) dry
- B. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.
- C. Water: Potable.

2.5 RELATED MATERIALS

- A. Joint Fillers: ASTM D 1751, asphalt-saturated cellulosic fiber in preformed strips.
- B. Bonding Agent: ASTM C 1059, Type II, non-redispersible, acrylic emulsion or styrene butadiene.

2.6 CONCRETE MIXTURES

- A. Prepare design mixtures, proportioned according to ACI 301 (ACI 301M), for each type and strength of normal-weight concrete, and as determined by either laboratory trial mixtures or field experience.
 - 1. Use a qualified independent testing agency for preparing and reporting proposed concrete design mixtures for the trial batch method.
 - 2. When automatic machine placement is used, determine design mixtures and obtain laboratory test results that meet or exceed requirements.
- B. Proportion mixtures to provide normal-weight concrete with the same properties as that used for slabs-on-grade from 03 3000, CAST-IN-PLACE CONCRETE.
- C. Limit water-soluble, chloride-ion content in hardened concrete to 0.15 percent by weight of cement.
- D. Chemical Admixtures: Use admixtures according to manufacturer's written instructions.
 - 1. Use water-reducing admixture or plasticizing admixture in concrete as required for placement and workability.
 - 2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
- E. Cementitious Materials: Limit percentage by weight of cementitious materials other than portland cement according to ACI 301 (ACI 301M) requirements for concrete exposed to deicing chemicals.

2.7 CONCRETE MIXING

- A. Ready-Mixed Concrete: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M. Furnish batch certificates for each batch discharged and used in the Work.
 - 1. When air temperature is between 85 and 90 deg F (30 and 32 deg C), reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F (32 deg C), reduce mixing and delivery time to 60 minutes.
- B. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M. Mix concrete materials in appropriate drum-type batch machine mixer.
 - 1. For concrete batches of 1 cu. yd. (0.76 cu. m) or smaller, continue mixing at least 1-1/2 minutes, but not more than 5 minutes after ingredients are in mixer, before any part of batch is released.
 - 2. For concrete batches larger than 1 cu. yd. (0.76 cu. m), increase mixing time by 15 seconds for each additional 1 cu. yd. (0.76 cu. m).
 - 3. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mixture type, mixing time, quantity, and amount of water added.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine exposed subgrades and subbase surfaces for compliance with requirements for dimensional, grading, and elevation tolerances.
- B. Proof-roll prepared subbase surface below concrete paving to identify soft pockets and areas of excess yielding.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Remove loose material from compacted subbase surface immediately before placing concrete.

3.3 EDGE FORMS AND SCREED CONSTRUCTION

- A. Set, brace, and secure edge forms, bulkheads, and intermediate screed guides to required lines, grades, and elevations. Install forms to allow continuous progress of work and so forms can remain in place at least 24 hours after concrete placement.
- B. Clean forms after each use and coat with form-release agent to ensure separation from concrete without damage.

3.4 STEEL REINFORCEMENT

- A. General: Comply with CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.
- B. Clean reinforcement of loose rust and mill scale, earth, ice, or other bond-reducing materials.
- C. Arrange, space, and securely tie bars and bar supports to hold reinforcement in position during concrete placement. Maintain minimum cover to reinforcement.

- D. Install welded wire reinforcement in lengths as long as practicable. Lap adjoining pieces at least one full mesh, and lace splices with wire. Offset laps of adjoining widths to prevent continuous laps in either direction.
- E. Zinc-Coated Reinforcement: Use galvanized-steel wire ties to fasten zinc-coated reinforcement. Repair cut and damaged zinc coatings with zinc repair material.
- F. Epoxy-Coated Reinforcement: Use epoxy-coated steel wire ties to fasten epoxy-coated reinforcement. Repair cut and damaged epoxy coatings with epoxy repair coating according to ASTM D 3963/D 3963M.
- G. Install fabricated bar mats in lengths as long as practicable. Handle units to keep them flat and free of distortions. Straighten bends, kinks, and other irregularities, or replace units as required before placement. Set mats for a minimum 2-inch (50-mm) overlap of adjacent mats.

3.5 JOINTS

- A. General: Form construction, isolation, and contraction joints and tool edges true to line, with faces perpendicular to surface plane of concrete. Construct transverse joints at right angles to centerline unless otherwise indicated.
 - 1. When joining existing paving, place transverse joints to align with previously placed joints unless otherwise indicated.
- B. Construction Joints: Set construction joints at side and end terminations of paving and at locations where paving operations are stopped for more than one-half hour unless paving terminates at isolation joints.
 - 1. Continue steel reinforcement across construction joints unless otherwise indicated. Do not continue reinforcement through sides of paving strips unless otherwise indicated.
 - 2. Provide tie bars at sides of paving strips where indicated.
 - 3. Butt Joints: Use bonding agent at joint locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
 - 4. Keyed Joints: Provide preformed keyway-section forms or bulkhead forms with keys unless otherwise indicated. Embed keys at least 1-1/2 inches (38 mm) into concrete.
 - 5. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.
- C. Isolation Joints: Form isolation joints of preformed joint-filler strips abutting concrete curbs, catch basins, manholes, inlets, structures, other fixed objects, and where indicated.
 - 1. Locate expansion joints at intervals of 50 feet (15.25 m) unless otherwise indicated.
 - 2. Extend joint fillers full width and depth of joint.
 - 3. Terminate joint filler not less than 1/2 inch (13 mm) or more than 1 inch (25 mm) below finished surface if joint sealant is indicated.
 - 4. Place top of joint filler flush with finished concrete surface if joint sealant is not indicated.
 - 5. Furnish joint fillers in one-piece lengths. Where more than one length is required, lace or clip ioint-filler sections together.
 - 6. During concrete placement, protect top edge of joint filler with metal, plastic, or other temporary preformed cap. Remove protective cap after concrete has been placed on both sides of joint.
- D. Contraction Joints: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of the concrete thickness, as follows, to match jointing of existing adjacent concrete paying:
 - 1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint with grooving tool to a 3/8-inch (10-mm) radius. Repeat grooving of contraction joints after applying surface finishes.
 - a. Tolerance: Ensure that grooved joints are within 3 inches (75 mm)either way from centers of dowels.

E. Edging: After initial floating, tool edges of paving, gutters, curbs, and joints in concrete with an edging tool to a 1/4-inch (6-mm) radius. Repeat tooling of edges after applying surface finishes.

3.6 CONCRETE PLACEMENT

- A. Before placing concrete, inspect and complete formwork installation, steel reinforcement, and items to be embedded or cast-in.
- B. Remove snow, ice, or frost from subbase surface and steel reinforcement before placing concrete. Do not place concrete on frozen surfaces.
- C. Moisten subbase to provide a uniform dampened condition at time concrete is placed. Do not place concrete around manholes or other structures until they are at required finish elevation and alignment.
- D. Comply with ACI 301 (ACI 301M) requirements for measuring, mixing, transporting, and placing concrete.
- E. Do not add water to concrete during delivery or at Project site. Do not add water to fresh concrete after testing.
- F. Deposit and spread concrete in a continuous operation between transverse joints. Do not push or drag concrete into place or use vibrators to move concrete into place.
- G. Consolidate concrete according to ACI 301 (ACI 301M) by mechanical vibrating equipment supplemented by hand spading, rodding, or tamping.
 - 1. Consolidate concrete along face of forms and adjacent to transverse joints with an internal vibrator. Keep vibrator away from joint assemblies, reinforcement, or side forms. Use only square-faced shovels for hand spreading and consolidation. Consolidate with care to prevent dislocating reinforcement, dowels and joint devices.
- H. Screed paving surface with a straightedge and strike off.
- I. Commence initial floating using bull floats or darbies to impart an open-textured and uniform surface plane before excess moisture or bleed water appears on the surface. Do not further disturb concrete surfaces before beginning finishing operations or spreading surface treatments.
- J. Slip-Form Paving: Use design mixture for automatic machine placement. Produce paving to required thickness, lines, grades, finish, and jointing.
 - 1. Compact subbase and prepare subgrade of sufficient width to prevent displacement of slip-form paving machine during operations.
- K. Hot-Weather Placement: Comply with ACI 301 (ACI 301M) and as follows when hot-weather conditions exist:
 - 1. Cool ingredients before mixing to maintain concrete temperature below 90 deg F (32 deg C) at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated in total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
 - 2. Cover steel reinforcement with water-soaked burlap so steel temperature will not exceed ambient air temperature immediately before embedding in concrete.
 - 3. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas.

3.7 CONCRETE PROTECTION AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.

- B. Comply with ACI 306.1 for cold-weather protection.
- C. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h (1 kg/sq. m x h) before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete but before float finishing.
- D. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.
- E. Curing Methods: Cure concrete by moisture curing, moisture-retaining-cover curing, curing compound or a combination of these as follows:
 - 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 - a. Water.
 - b. Continuous water-fog spray.
 - c. Absorptive cover, water saturated and kept continuously wet. Cover concrete surfaces and edges with 12-inch (300-mm) lap over adjacent absorptive covers.
 - 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover, placed in widest practicable width, with sides and ends lapped at least 12 inches (300 mm) and sealed by waterproof tape or adhesive. Immediately repair any holes or tears occurring during installation or curing period using cover material and waterproof tape.
 - 3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas that have been subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating, and repair damage during curing period.

3.8 PAVING TOLERANCES

- A. Comply with tolerances in ACI 117 and as follows:
 - 1. Elevation: 3/4 inch (19 mm).
 - 2. Thickness: Plus 3/8 inch (10 mm), minus 1/4 inch (6 mm).
 - 3. Surface: Gap below 10-foot- (3-m-) long, unleveled straightedge not to exceed 1/2 inch (13 mm).
 - 4. Alignment of Tie-Bar End Relative to Line Perpendicular to Paving Edge: 1/2 inch per 12 inches (13 mm per 300 mm) of tie bar.
 - 5. Lateral Alignment and Spacing of Dowels: 1 inch (25 mm).
 - 6. Vertical Alignment of Dowels: 1/4 inch (6 mm).
 - 7. Alignment of Dowel-Bar End Relative to Line Perpendicular to Paving Edge: 1/4 inch per 12 inches (6 mm per 300 mm) of dowel.
 - 8. Joint Spacing: 3 inches (75 mm).
 - 9. Contraction Joint Depth: Plus 1/4 inch (6 mm), no minus.
 - 10. Joint Width: Plus 1/8 inch (3 mm), no minus.

3.9 FIELD QUALITY CONTROL

- A. Testing Agency: Contractor will engage a qualified testing agency to perform tests and inspections.
- B. Testing Services: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:
 - 1. Testing Frequency: Obtain at least one composite sample for each 5000 sq. ft. (465 sq. m) or fraction thereof of each concrete mixture placed each day.
 - a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
 - 2. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.

- 3. Air Content: ASTM C 231, pressure method; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.
- 4. Concrete Temperature: ASTM C 1064/C 1064M; one test hourly when air temperature is 40 deg F (4.4 deg C) and below and when it is 80 deg F (27 deg C) and above, and one test for each composite sample.
- 5. Compression Test Specimens: ASTM C 31/C 31M; cast and laboratory cure one set of three standard cylinder specimens for each composite sample.
- 6. Compressive-Strength Tests: ASTM C 39/C 39M; test one specimen at seven days and two specimens at 28 days.
 - a. A compressive-strength test shall be the average compressive strength from two specimens obtained from same composite sample and tested at 28 days.
- C. Strength of each concrete mixture will be satisfactory if average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi (3.4 MPa).
- D. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.
- E. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.
- F. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect.
- G. Concrete paving will be considered defective if it does not pass tests and inspections.
- H. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.
- I. Prepare test and inspection reports.

3.10 REPAIRS AND PROTECTION

- A. Remove and replace concrete paving that is broken, damaged, or defective or that does not comply with requirements in this Section. Remove work in complete sections from joint to joint unless otherwise approved by Architect.
- B. Drill test cores, where directed by Architect, when necessary to determine magnitude of cracks or defective areas. Fill drilled core holes in satisfactory paving areas with portland cement concrete bonded to paving with epoxy adhesive.
- C. Protect concrete paving from damage. Exclude traffic from paving for at least 14 days after placement. When construction traffic is permitted, maintain paving as clean as possible by removing surface stains and spillage of materials as they occur.
- D. Maintain concrete paving free of stains, discoloration, dirt, and other foreign material. Sweep paving not more than two days before date scheduled for Substantial Completion inspections.

END OF SECTION 32 1313